Intermediate Python

John Strickler

Version 1.0, November 2021

Table of Contents

About this course

Welcome!

Classroom etiquette for in-person learning
Classroom etiquette for remote learning
Course Outline

Student files

Extracting the student files

Examples

Lab Exercises

Appendices

Chapter 1: Pythonic Programming

The Zen of Python

Tuples

Iterable unpacking
Extended iterable unpacking
Unpacking function arguments
The sorted() function
Custom sort keys

Lambda functions

List comprehensions
Dictionary comprehensions
Set comprehensions
Iterables

Generator Expressions
Generator functions

String formatting

f-strings

Chapter 2: Functions Modules Packages

Functions

Function parameters

Default parameters

Python Function parameter behavior (from PEP 3102)
Name resolution (AKA Scope)

The global statement

Modules

Using import

© 00 00 J O U1 = W W N =

S U U1 U U1 U1 b R R W W W W WWN NN R R R R e
S © 00 O U1 W O OO U1 O 0 Ok W DN RFEF O© I N FRF 3 &+ NN = O

How import * can be dangerous 64

Module search path 66
Executing modules as scripts 67
Packages 69
Configuring import with __init__.py 73
Documenting modules and packages 75
Python style 76
Chapter 3: Intermediate Classes 79
What is a class? 80
Defining Classes 81
Object Instances 82
Instance attributes 83
Instance Methods 84
Constructors 86
Getters and setters 87
Properties 88
Class Data 91
Class Methods 93
Inheritance 95
Using super() 96
Multiple Inheritance 100
Abstract base classes 103
Special Methods 106
Static Methods 112
Chapter 4: Metaprogramming 115
Metaprogramming 116
globals() and locals() 117
The inspect module 120
Working with attributes 123
Adding instance methods 126
Callable classes 129
Decorators 132
Applying decorators 134
Trivial Decorator 136
Decorator functions 138
Decorator Classes 141
Decorator parameters 145

Creating classes at runtime 148

Monkey Patching 151

Do you need a Metaclass? 154
About metaclasses 155
Mechanics of a metaclass 156
Singleton with a metaclass 160
Chapter 5: Developer Tools 165
Program development 166
Comments 167
pylint 168
Customizing pylint 169
Using pyreverse 170
The Python debugger 173
Starting debug mode 174
Stepping through a program 175
Setting breakpoints 176
Profiling 177
Benchmarking 179
Chapter 6: Unit Testing with pytest 183
What is a unit test? 184
The pytest module 185
Creating tests 186
Running tests (basics) 187
Special assertions 188
Fixtures 190
User-defined fixtures 191
Builtin fixtures 193
Configuring fixtures 197
Parametrizing tests 200
Marking tests 203
Running tests (advanced) 206
Skipping and failing 207
Mocking data 210
pymock objects 211
Pytest plugins 217
Pytest and Unittest 218
Chapter 7: Database Access 221
The DB API 222

Connecting to a Server 224

Creating a Cursor
Executing a query statement
Fetching Data

Non-query statements
SQL Injection
Parameterized Statements
Dictionary Cursors
Metadata

Generic alternate cursors
Transactions
Object-relational Mappers
NoSQL

Chapter 8: Multiprogramming

Multiprogramming

What Are Threads?

The Python Thread Manager
The threading Module
Threads for the impatient
Creating a thread class
Variable sharing

Using queues

Debugging threaded Programs

The multiprocessing module

Using pools

Alternatives to multiprogramming

Chapter 9: Network Programming

Making HTTP requests

Grabbing a web page the hard way

Consuming Web services the hard way

sending e-mail

Email attachments
Remote Access
Auto-adding hosts
Remote commands
Copying files with SFTP

Interactive remote access

Chapter 10: Effective Scripts

Using glob

226
227
228
231
234
236
241
245
246
249
251
252
259
260
261
262
263
264
266
268
271
274
276
280
285
287
288
295
300
303
306
310
311
312
315
318
321
322

Using shlex.split() 324

The subprocess module 325
subprocess convenience functions 326
Capturing stdout and stderr 329
Permissions 332
Using shutil 334
Creating a useful command line script 337
Creating filters 338
Parsing the command line 341
Simple Logging 346
Formatting log entries 348
Logging exception information 350
Logging to other destinations 352
Chapter 11: Serializing Data 357
Which XML module to use? 358
Getting Started With ElementTree 359
How ElementTree Works 360
Elements 361
Creating a New XML Document 364
Parsing An XML Document 367
Navigating the XML Document 368
Using XPath 372
About JSON 376
Reading JSON 377
Writing JSON 380
Customizing JSON 383
Reading and writing YAML 387
Reading CSV data 392
Nonstandard CSV 393
Using csv.DictReader 395
Writing CSV Data 397
Pickle 399
Appendix A: Python Bibliography 403

Index 407

Intermediate Python 1

About this course

© 2021 CJ Associates (rev1.0) About this course

2 Intermediate Python

Welcome!

* We’re glad you’re here
* Class has hands-on labs for nearly every chapter

e Please make a name tent

Instructor name:

Instructor e-mail:

Have Fun!

About this course © 2021 CJ Associates (rev1.0)

Intermediate Python 3

Classroom etiquette for in-person learning

* Noisemakers off
* No phone conversations

* Come and go quietly during class.
Please turn off cell phone ringers and other noisemakers.
If you need to have a phone conversation, please leave the classroom.

We’re all adults here; feel free to leave the classroom if you need to use the restroom, make a phone
call, etc. You don’t have to wait for a lab or break, but please try not to disturb others.

Please do not bring killer rabbits to class. They might maim, dismember, or

IMPORTANT
otherwise disturb your fellow students.

Classroom etiquette for remote learning
 Please turn your mic off when you’re not speaking. If multiple mics are on, it makes it difficult for
all to hear
» The instructor doesn’t know you need help unless you tell them. It’s ok to ask for help often.

» Ask questions. Ask questions. Ask questions.

INTERACT with the instructor and other students.

Log off the remote S/W at the end of the day

© 2021 CJ Associates (rev1.0) About this course

4 Intermediate Python

Course Outline

Half-Day 1

Chapter 1 Pythonic Programming
Chapter 2 Functions, Modules, and Packages

Half-Day 2

Chapter 3 Intermediate Classes
Chapter 4 Metaprogramming

Half-Day 3

Numpy
Matplotlib

Half-Day 4

Pandas

Half-Day 5

Chapter 5 Developer tools
Chapter 6 Unit Testing with PyTest
Chapter 7 Database access

Half-Day 6

Chapter 8 Multiprogramming
Chapter 9 Network Programming

Half-Day 7

Chapter 10 Effective Scripting
Chapter 11 Serializing Data

The actual schedule varies with circumstances. The last day may include ad hoc topics

NOTE
requested by students

About this course © 2021 CJ Associates (rev1.0)

Intermediate Python 5

Student files

You will need to load some files onto your computer. The files are in a compressed archive. When you
extract them onto your computer, they will all be extracted into a directory named py3cirrusint.

What’s in the files?

py3cirrusint contains data and other files needed for the exercises
py3cirrusint/EXAMPLES contains the examples from the course manuals.
py3cirrusint/ANSWERS contains sample answers to the labs.

The student files do not contain Python itself. It will need to be installed

WARNING
separately. This has probably already been done for you.

© 2021 CJ Associates (rev1.0) About this course

6 Intermediate Python

Extracting the student files

Windows

Open the file py3cirrusint.zip. Extract all files to your desktop. This will create the folder
py3cirrusint.

Non-Windows (includes Linux, OS X, etc)

Copy or download py3cirrusint.tar.gz to your home directory. In your home directory, type

tar xzvf py3cirrusint.tar.gz

This will create the py3cirrusint directory under your home directory.

About this course © 2021 CJ Associates (rev1.0)

Intermediate Python

Examples

Nearly all examples from the course manual are provided in the EXAMPLES subdirectory.
It will look like this:

Example

cmd_line_args.py

#!/usr/bin/env python
import sys @
print(sys.argv) @

name = sys.argv[1] ®
print("name is", name)

@ Import the sys module
@ Print all parameters, including script itself

® Get the first actual parameter

cmd_line_args.py Fred

['/Users/jstrick/curr/courses/python/examples3/cmd_line_args.py', 'Fred']
name is Fred

© 2021 CJ Associates (rev1.0) About this course

Lab Exercises

* Relax - the labs are not quizzes

* Feel free to modify labs

* Ask the instructor for help

* Work on your own scripts or data

* Answers are in py3cirrusint/ANSWERS

Appendices

* Appendix A: Python Bibliography

About this course

Intermediate Python

© 2021 CJ Associates (rev1.0)

Intermediate Python 9

Chapter 1: Pythonic Programming
Objectives

* Learn what makes code "Pythonic"

» Understand some Python-specific idioms

Create lambda functions

Perform advanced slicing operations on sequences

Distinguish between collections and generators

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

10 Intermediate Python

The Zen of Python

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.

Although never is often better than right now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea —let’s do more of those!

— Tim Peters, from PEP 20

Tim Peters is a longtime contributor to Python. He wrote the standard sorting routine, known as
timsort.

The above text is printed out when you execute the code import this. Generally speaking, if code
follows the guidelines in the Zen of Python, then it’s Pythonic.

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 11
Tuples

» Fixed-size, read-only

Collection of related items

« Supports some sequence operations

Think 'struct’ or 'record’
A tuple is a collection of related data. While on the surface it seems like just a read-only list, it is used
when you need to pass multiple values to or from a function, but the values are not all the same type

To create a tuple, use a comma-separated list of objects. Parentheses are not needed around a tuple
unless the tuple is nested in a larger data structure.

A tuple in Python might be represented by a struct or a "record" in other languages.
While both tuples and lists can be used for any data:

» Use a list when you have a collection of similar objects.

» Use a tuple when you have a collection of related objects, which may or may not be similar.

To specify a one-element tuple, use a trailing comma, otherwise it will be interpreted as a

TIP
single object: color = red’,
Example
hostinfo = ('gemini', 'linux',"ubuntu', "hardy', 'Bob Smith')
birthday = ('April’,5,1978)

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

12 Intermediate Python

Iterable unpacking

* Copy iterable to list of variables
» Frequently used with list of tuples

» Make code more readable

When you have an iterable such as a tuple or list, you access individual elements by index. However,
spam[@] and spam[1] are not so readable compared to first_name and company. To copy an iterable to a
list of variable names, just assign the iterable to a comma-separated list of names:

birthday = ('April’,5,1978)
month, day, year = birthday

You may be thinking "why not just assign to the variables in the first place?". For a single tuple or list,
this would be true. The power of unpacking comes in the following areas:

* Looping over a sequence of tuples

* Passing tuples (or other iterables) into a function

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python

Example

unpacking people.py

#!/usr/bin/env python

#

people = [@
('Melinda', 'Gates', 'Gates Foundation'),
('Steve', 'Jobs', 'Apple'),
("Larry', 'Wall', 'Perl'),
('Paul', 'Allen', 'Microsoft'),
("Larry', 'Ellison', 'Oracle'),
('Bill', 'Gates', 'Microsoft'),
('Mark', 'Zuckerberg', 'Facebook'),
('Sergey', 'Brin', 'Google'),
('Larry', 'Page', 'Google'),
('Linus', 'Torvalds', 'Linux'),

]

for first_name, last_name, org in people: @
print("{} {}".format(first_name, last_name))

@ A list of 3-element tuples

@ The for loop unpacks each tuple into the three variables.

unpacking_people.py

Melinda Gates
Steve Jobs
Larry Wall

Paul Allen
Larry Ellison
Bill Gates

Mark Zuckerberg
Sergey Brin
Larry Page
Linus Torvalds

© 2021 CJ Associates (rev1.0)

13

Chapter 1: Pythonic Programming

14 Intermediate Python

Extended iterable unpacking

e Allows for one "wild card"

» Allows common "first, rest" unpacking

When unpacking iterables, sometimes you want to grab parts of the iterable as a group. This is
provided by extended iterable unpacking.

One (and only one) variable in the result of unpacking can have a star prepended. This variable will be
a list of all values not assigned to other variables.

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python

Example

extended_iterable_unpacking.py
#!/usr/bin/env python

values = ['a', 'b', 'c¢', 'd', 'e'] @®

X, Yy, ¥z = values @

print("x: {} y: {} z: {}".format(x, y, z))
print()

X, *y, z = values @
print("x: {} y: {} z: {}".format(x, y, z))
print()

*X, ¥, z = values @
print("x: {} y: {} z: {}".format(x, y, z))
print()

people = [
('Bill", 'Gates', 'Microsoft'),
('Steve', 'Jobs', 'Apple'),
('Paul', 'Allen', 'Microsoft'),
("Larry', 'Ellison', 'Oracle'),
('Mark', 'Zuckerberg', 'Facebook'),
('Sergey', 'Brin', 'Google'),
("Larry', 'Page', 'Google'),
('Linux', 'Torvalds', 'Linux'),

]

for *name, _ in people: ®
print(name)

print()

@ values has 6 elements
@ * takes all extra elements from iterable

® name gets all but the last field

© 2021 CJ Associates (rev1.0)

15

Chapter 1: Pythonic Programming

16 Intermediate Python

extended_iterable_unpacking.py
X: a y: b z: ['c', 'd', 'e']
X: a y: ['b", '¢', 'd'] Z: e
x: ['a', 'b", 'c'] y: d z: e

['Bill', 'Gates']
['Steve', 'Jobs']
['Paul', 'Allen']
['Larry', 'Ellison']
['Mark", 'Zuckerberg']
['Sergey', 'Brin']
['Larry', 'Page']
['Linux', 'Torvalds']

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 17
Unpacking function arguments

e Go from iterable to list of items

e Use * or **

Sometimes you need the other end of iterable unpacking. What do you do if you have a list of three
values, and you want to pass them to a method that expects three positional arguments? One approach
is to use the individual items by index. A more Pythonic approach is to use * to unpack the iterable into
individual items:

Use a single asterisk to unpack a list or tuple (or similar iterable); use two asterisks to unpack a
dictionary or similar.

In the example, see how the list HEADINGS is passed to .format(), which expects individual
parameters, not one parameter containing multiple values.

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

18 Intermediate Python

Example

unpacking function_args.py

#!/usr/bin/env python

#

people = [@
('"Joe', 'Schmoe', 'Burbank', 'CA"),
('Mary', 'Rattburger', 'Madison', 'WI'),
('Jose', 'Ramirez', 'Ames', 'IA'),

]

def person_record(first_name, last_name, city, state): @
print("{} {} lives in {}, {}".format(first_name, last_name, city, state))

for person in people: ®
person_record(*person) @
@ list of 4-element tuples
@ function that takes 4 parameters
® person is a tuple (one element of people list)

@ *person unpacks the tuple into four individual parameters

unpacking_function_args.py
Joe Schmoe 1lives in Burbank, CA

Mary Rattburger lives in Madison, WI
Jose Ramirez lives in Ames, IA

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 19

Example

shoe_sizes.py

#!/usr/bin/env python

#
BARLEYCORN = 1 / 3.0
CM_TO_INCH = 2.54

MENS_START_SIZE = 12
WOMENS_START_SIZE = 10.5

FMT = "{:6.1f} {:8.2f} {:8.2f}'
HEADFMT = '{:>6s} {:>8s} {:>8s}'

HEADINGS = ['Size', 'Inches', 'CM']

SIZE_RANGE = []
for i in range(6, 14):
SIZE_RANGE.extend([i, i + .5])

def main():
for heading, flag in [("MEN'S", True), ("WOMEN'S", False)]:
print(heading)
print ((HEADFMT.format(*HEADINGS))) @
for size in SIZE_RANGE:
inches, cm = get_length(size, flag)
print(FMT.format(size, inches, cm))

print()

def get_length(size, mens=True):

if mens:

start_size = MENS_START_SIZE
else:

start_size = WOMENS_START_SIZE

inches = start_size - ((start_size - size) * BARLEYCORN)
c¢m = inches * CM_TO_INCH
return inches, cm

if __name_ == "' main__
main()

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

20 Intermediate Python

@ format expects individual arguments for each placeholder; the asterisk unpacks HEADINGS into
individual strings

shoe_sizes.py

MEN'S
Size Inches CM
6.0 10.00 25.40
6.5 10.17 25.82
7.0 10.33 26.25
7.5 10.50 26.67
8.0 10.67 27.09
8.5 10.83 27.52

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 21
The sorted() function

» Returns a sorted copy of any collection

» Customize with named keyword parameters

key=
reverse=

The sorted() builtin function returns a sorted copy of its argument, which can be any iterable.

You can customize sorted with the key parameter.

Example

basic_sorting.py

#!/usr/bin/env python

"""Basic sorting example"""

fruits = ["pomegranate”, "cherry", "apricot", "date", "Apple", "lemon", "Kiwi",
"ORANGE", "lime", "Watermelon", "quava", "papaya", "FIG", "pear", "banana",
"Tamarind", "persimmon", "elderberry", "peach", "BLUEberry", "lychee",
"grapell]

sorted fruit = sorted(fruits) @
print(sorted_fruit)

@ sorted() returns a list

basic_sorting.py

['Apple', 'BLUEberry', 'FIG', 'Kiwi', 'ORANGE', 'Tamarind', 'Watermelon', 'apricot',
'banana', 'cherry', 'date', 'elderberry', 'grape', 'guava', 'lemon', 'lime', 'lychee',
'papaya’, 'peach', 'pear', 'persimmon', 'pomegranate’]

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

22 Intermediate Python
Custom sort keys

» Use key parameter
 Specify name of function to use

» Key function takes exactly one parameter

Useful for case-insensitive sorting, sorting by external data, etc.

You can specify a function with the key parameter of the sorted() function. This function will be used
once for each element of the list being sorted, to provide the comparison value. Thus, you can sort a list
of strings case-insensitively, or sort a list of zip codes by the number of Starbucks within the zip code.

The function must take exactly one parameter (which is one element of the sequence being sorted) and
return either a single value or a tuple of values. The returned values will be compared in order.

You can use any builtin Python function or method that meets these requirements, or you can write
your own function.

The lower() method can be called directly from the builtin object str. It takes one string

TIP
argument and returns a lower case copy.

sorted_strings = sorted(unsorted_strings, key=str.lower)

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 23

Example

custom_sort_keys.py

#!/usr/bin/env python

fruit = ["pomegranate”, "cherry", "apricot", "date", "Apple", "lemon",
"Kiwi", "ORANGE", "lime", "Watermelon", "guava", "papaya", "FIG",
"pear", "banana", "Tamarind", "persimmon", "elderberry", "peach",
"BLUEberry", "lychee", "grape"]

def ignore_case(item): @
return item.lower() @

fs1 = sorted(fruit, key=ignore_case) ®
print("Ignoring case:")
print(" ".join(fs1), end="\n\n")

def by_length_then_name(item):
return (len(item), item.lower()) @

fs2 = sorted(fruit, key=by_length_then_name)
print("By length, then name:")

print(" ".join(fs2))

print()

nums = [800, 80, 1000, 32, 255, 400, 5, 5000]

n1 = sorted(nums) ®
print("Numbers sorted numerically:")
for n in n1:
print(n, end=" ")
print("\n")

n2 = sorted(nums, key=str) ®
print("Numbers sorted as strings:")
for n in n2:

print(n, end=" ")
print()

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

24 Intermediate Python

@ Parameter is one element of iterable to be sorted

@ Return value to sort on

® Specify function with named parameter key

@ Key functions can return tuple of values to compare, in order
® Numbers sort numerically by default

® Sort numbers as strings
custom_sort_keys.py
Ignoring case:

Apple apricot banana BLUEberry cherry date elderberry FIG grape guava Kiwi lemon lime
lychee ORANGE papaya peach pear persimmon pomegranate Tamarind Watermelon

By length, then name:
FIG date Kiwi lime pear Apple grape guava lemon peach banana cherry lychee ORANGE papaya

apricot Tamarind BLUEberry persimmon elderberry Watermelon pomegranate

Numbers sorted numerically:
5 32 80 255 400 800 1000 5000

Numbers sorted as strings:
1000 255 32 400 5 5000 80 800

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 25

Example

sort_holmes.py

#!/usr/bin/env python
"""Sort titles, ignoring leading articles
books = [
"A Study in Scarlet",
"The Sign of the Four",
"The Hound of the Baskervilles",
"The Valley of Fear",
"The Adventures of Sherlock Holmes",
"The Memoirs of Sherlock Holmes",
"The Return of Sherlock Holmes",
"His Last Bow",
"The Case-Book of Sherlock Holmes",

def strip_articles(title): @
title = title.lower()
for article in 'a ', 'an ', 'the ':
if title.startswith(article):
title = title[len(article):] @
break

return title

for book in sorted(books, key=strip_articles): ®
print(book)

@ create function which takes element to compare and returns comparison key
@ remove article by using a slice that starts after article + space"

® sort using custom function

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

26 Intermediate Python

sort_holmes.py

The Adventures of Sherlock Holmes
The Case-Book of Sherlock Holmes
His Last Bow

The Hound of the Baskervilles

The Memoirs of Sherlock Holmes
The Return of Sherlock Holmes

The Sign of the Four

A Study in Scarlet

The Valley of Fear

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 27
Lambda functions

Short cut function definition

Useful for functions only used in one place

Frequently passed as parameter to other functions

» Function body is an expression; it cannot contain other code

A lambda function is a brief function definition that makes it easy to create a function on the fly. This
can be useful for passing functions into other functions, to be called later. Functions passed in this way
are referred to as "callbacks". Normal functions can be callbacks as well. The advantage of a lambda
function is solely the programmer’s convenience. There is no speed or other advantage.

One important use of lambda functions is for providing sort keys; another is to provide event handlers
in GUI programming.

The basic syntax for creating a lambda function is

lambda parameter-list: expression

where parameter-list is a list of function parameters, and expression is an expression involving the
parameters. The expression is the return value of the function.

A lambda function could also be defined in the normal manner

def function-name(param-list):
return expr

But it is not possible to use the normal syntax as a function parameter, or as an element in a list.

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

28 Intermediate Python
Example
lambda_examples.py

#!/usr/bin/env python

fruits = ['watermelon', 'Apple', 'Mango', 'KIWI', 'apricot', 'LEMON', 'quava']

sfruits = sorted(fruits, key=lambda e: e.lower()) @

print(.join(sfruits))

M The lambda function takes one fruit and returns it in lower case

lambda_examples.py

Apple apricot guava KIWI LEMON Mango watermelon

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 29
List comprehensions

 Filters or modifies elements
* Creates new list

 Shortcut for a for loop

A list comprehension is a Python idiom that creates a shortcut for a for loop. It returns a copy of a list
with every element transformed via an expression. Functional programmers refer to this as a mapping
function.

Aloop like this:

results = []
for var in sequence:
results.append(expr) # where expr involves var

can be rewritten as
results = [expr for var in sequence]
A conditional if may be added to filter values:

results = [expr for var in sequence if expr]

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

30

Example

listcomp.py

#!/usr/bin/env python

fruits = ['watermelon', 'apple', 'mango’, 'kiwi', 'apricot', 'lemon’
values = [2, 42, 18, 92, "boom", ['a', 'b', 'c']]
ufruits = [fruit.upper() for fruit in fruits] @

afruits = [fruit for fruit in fruits if fruit.startswith('a')] @

doubles = [v * 2 for v in values] ®

print("ufruits:", .join(ufruits))
print("afruits:", " ".join(afruits))
print("doubles:", end=" ")
for d in doubles:

print(d, end=" ")

print()

@ Copy each fruit to upper case
@ Select each fruit if it starts with 'a’

® Copy each number, doubling it

listcomp.py
ufruits: WATERMELON APPLE MANGO KIWI APRICOT LEMON GUAVA

afruits: apple apricot
doubles: 4 84 36 184 boomboom ['a', 'b', '¢', 'a', 'b', 'c']

Chapter 1: Pythonic Programming

Intermediate Python

, 'guava']

© 2021 CJ Associates (rev1.0)

Intermediate Python
Dictionary comprehensions

» Expression is key/value pair

» Transform iterable to dictionary

A dictionary comprehension has syntax similar to a list comprehension. The expression is a key:value
pair, and is added to the resulting dictionary. If a key is used more than once, it overrides any previous

keys. This can be handy for building a dictionary from a sequence of values.

Example

dict_comprehension.py

#!/usr/bin/env python

animals = ['OWL', 'Badger', 'bushbaby', 'Tiger', 'Wombat', 'GORILLA', 'AARDVARK']

{KEY: VALUE for VAR ... in ITERABLE if CONDITION}
d = {a.lower(): len(a) for a in animals} @

print(d, "\n")
words = ['unicorn', 'stigmata', 'barley', 'bookkeeper']
d = {w:{c:w.count(c) for c in sorted(w)} for w in words} @

for word, word_signature in d.items():
print(word, word_signature)

@ Create a dictionary with key/value pairs derived from an iterable

@ Use a nested dictionary comprehension to create a dictionary mapping words to dictionaries which

map letters to their counts (could be useful for anagrams)

dict_comprehension.py

{'owl': 3, 'badger': 6, 'bushbaby': 8, 'tiger': 5, 'wombat': 6, 'gorilla': 7, 'aardvark':

8}

unicorn {'c': 1, "i':' 1, 'n': 2, '0": 1, 'r': 1, "vu': 1}
stigmata {'a': 2, 'g9': 1, "i': 1, 'm': 1, 's': 1, "t': 2}
barley {'a': 1, 'b': 1, 'e': r': 1, '
bookkeeper {'b': 1, 'e': 3, 'k': 2, '0': 2, 'p':

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

32 Intermediate Python
Set comprehensions

» Expression is added to set

» Transform iterable to set — with modifications

A set comprehension is useful for turning any sequence into a set. Items can be modified or skipped as
the set is built.

If you don’t need to modify the items, it’s probably easier to just past the sequence to the set()
constructor.

Example
set_comprehension.py
#!/usr/bin/env python
import re
with open("../DATA/mary.txt") as mary_in:
s = {w.lower() for 1n in mary_in for w in re.split(r'\W+', 1n) if w} @®
print(s)
@ Get unique words from file. Only one line is in memory at a time. Skip "empty" words.

set_comprehension.py

{'lamb', 'and', 'that', 'everywhere', 'go', 'the', 'had', 'its', 'white', 'as', 'went',

a', 'snow', 'sure', 'mary', 'little', 'was', 'fleece', 'to'}

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python

Iterables

* Expression that can be looped over

* Can be collections e.g. list, tuple, str, bytes

33

» Can be generators e.g. range(), file objects, enumerate(), zip(), reversed()

Python has many builtin iterables — a file object, for instance, which allows iterating through the lines

in a file.

All builtin collections (list, tuple, str, bytes) are iterables. They keep all their values in memory. Many
other builtin iterables are generators.

A generator does not keep all its values in memory - it creates them one at a time as needed, and feeds
them to the for-in loop. This is a Good Thing, because it saves memory.

Iterables
f/a'l-.l- \\\
|; IN '
\ MEMORY!
. All lterables
ff EAGER! \;_‘_t:- _ Collections
N ~____________{/) N
.
Sequences Mappings
sir 4
bytes Ictt
list se
tuple frozenset
collections.namedtuple collections.defaulidict
sorted() ' collections.Counter

list comprehension

© 2021 CJ Associates (rev1.0)

dict comprehension
set comprehension

-

N

(/
S .
s

/ /-
/ [LAZY!)

Generators —

open()

range()

enumerate()
DICT.items()

zip()

itertools.izip()
reversed()

generalor expression
generafor function
generafor class

(VIRTUAL

N
>

.

Chapter 1: Pythonic Programming

34 Intermediate Python

Generator Expressions

 Like list comprehensions, but create a generator object
» More efficient

» Use parentheses rather than brackets

A generator expression is similar to a list comprehension, but it provides a generator instead of a list.
That is, while a list comprehension returns a complete list, the generator expression returns one item
at a time.

The main difference in syntax is that the generator expression uses parentheses rather than brackets.

Generator expressions are especially useful with functions like sum(), min(), and max() that reduce an
iterable input to a single value:

NOTE There is an implied yield statement at the beginning of the expression.

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 35

Example
gen_ex.py
#!/usr/bin/env python

sum the squares of a list of numbers
using list comprehension, entire list is stored in memory
s1 = sum([x * x for x in range(10)]) @

only one square is in memory at a time with generator expression
s2 = sum(x * x for x in range(10)) @

print(s1, s2)

print()

with open("../DATA/mary.txt") as page:

m = max(len(line) for line in page) @
print(m)

@ using list comprehension, entire list is stored in memory
@ with generator expression, only one square is in memory at a time

® only one line in memory at a time. max() iterates over generated values
gen_ex.py
285 285

30

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

36 Intermediate Python
Generator functions

» Mostly like a normal function
 Use yield rather than return

 Maintains state

A generator is like a normal function, but instead of a return statement, it has a yield statement. Each
time the yield statement is reached, it provides the next value in the sequence. When there are no
more values, the function calls return, and the loop stops. A generator function maintains state
between calls, unlike a normal function.

Example

sieve_generator.py
#!/usr/bin/env python

def next_prime(limit):
flags = set() @

for i in range(2, limit):
if i in flags:
continue
for j in range(2 * i, Llimit + 1, i):
flags.add(j) @
yield i ®

np = next_prime(200) @
for prime in np: ®
print(prime, end=" ")
@ initialize empty set (to be used for "is-prime" flags
@ add non-prime elements to set
® execution stops here until next value is requested by for-in loop
@ next_prime() returns a generator object

® iterate over yielded primes

sieve_generator.py

235711131719 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109
113 127 1371 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python

Example

line_trimmer.py
#!/usr/bin/env python

def trimmed(file_name):
with open(file_name) as file_in:
for line in file_in:
yield line.rstrip('\n\r') @

for trimmed_line in trimmed('../DATA/mary.txt'): @
print(trimmed_line)

@ ‘yield' causes this function to return a generator object
@ looping over the a generator object returned by trimmed()

line_trimmer.py

Mary had a little lamb,
Its fleece was white as snow,
And everywhere that Mary went
The 1lamb was sure to go

© 2021 CJ Associates (rev1.0)

37

Chapter 1: Pythonic Programming

38 Intermediate Python

String formatting

Numbered placeholders

Add width, padding
» Access elements of sequences and dictionaries

* Access object attributes

The traditional (i.e., old) way to format strings in Python was with the % operator and a format string
containing fields designated with percent signs. The new, improved method of string formatting uses
the format() method. It takes a format string and one or more arguments. The format strings contains
placeholders which consist of curly braces, which may contain formatting details. This new method
has much more flexibility.

By default, the placeholders are numbered from left to right, starting at 0. This corresponds to the
order of arguments to format().

Formatting information can be added, preceded by a colon.

{:d} format the argument as an integer

{:03d} format as an integer, 3 columns wide, zero padded
{:>25s} same, but right-justified

{:.3f} format as a float, with 3 decimal places

Placeholders can be manually numbered. This is handy when you want to use a format() parameter
more than once.

"Try one of these: {0}.jpg {0}.png {0}.bmp {0}.pdf".format('penguin’)

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 39

Example

stringformat_ex.py
#!/usr/bin/env python
from datetime import date

color = 'blue’
animal = 'iguana'

print('{} {}'.format(color, animal)) @

fahr = 98.6839832
print('{:.1f}'.format(fahr)) @

value = 12345
print('{0:d} {0:04x} {0:080} {0:016b}'.format(value)) ®

data = {'A': 38, 'B': 127, 'C': 9}

for letter, number in sorted(data.items()):
print("{} {:4d}".format(letter, number)) @

@ {} placeholders are autonumbered, starting at 0; this corresponds to the parameters to format()
@ Formatting directives start with "'; .1f means format floating point with one decimal place
® {} placeholders can be manually numbered to reuse parameters

@ :4d means format decimal integer in a field 4 characters wide

stringformat_ex.py

blue iguana

98.7

12345 3039 00030071 0011000000111001
A 38

B 127

C 9

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

40 Intermediate Python
f-strings

» Shorter syntax for string formatting
* Only available Python 3.6 and later

* Put fin front of string

A great new feature, f-strings, was added to Python 3.6. These are strings that contain placeholders, as
used with normal string formatting, but the expression to be formatted is also placed in the
placeholder. This makes formatting strings more readable, with less typing. As with formatted strings,
any expression can be formatted.

Other than putting the value to be formatted directly in the placeholder, the formatting directives are
the same as normal Python 3 string formatting.

In normal 3.x formatting:

x = 24

y = 32.2345

name = 'Bill Gates'

company = 'Bill Gates'

print("{} founded {}.format(name, company)"
print("{:10s} {:.2f}".format(x, y)

f-strings let you do this:
x = 24
y = 32.2345

name = 'Bill Gates'

company = 'Bill Gates'
print(f"{name} founded {company})"
print(f"{x:10s} {y:.2f})"

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 41
Example
f_strings.py

#!/usr/bin/env python

import sys

if sys.version_info.major == 3 and sys.version_info.minor >= 6:

name = "Tim"
count = 5

avg = 3.456
info = 2093

result = 38293892

print(f"Name is [{name:<10s}]") @

print(f"Name is [{name:>10s}]") @

print(f"count is {count:03d} avg is {avg:.2f}") @
print(f"info is {info} {info:d} {info:o} {info:x}") @

print(f"${result:,d}") ®

city = 'Orlando’
temp = 85

print(f"It is {temp} in {city}") ®

else:
print("Sorry -- f-strings are only supported by Python 3.6+")

® < means left justify (default for non-numbers), 10 is field width, s formats a string
@ > means right justify

® .2f means round a float to 2 decimal points

@ d is decimal, o is octal, X is hex

® , means add commas to numeric value

® parameters can be selected by name instead of position

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

42 Intermediate Python

f_strings.py
Name is [Tim]
Name is [Tim]

count is 005 avg is 3.46
info is 2093 2093 4055 82d
$38,293,892

It is 85 in Orlando

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 43

Chapter 1 Exercises

Exercise 1-1 (pres_upper.py)

Read the file presidents.txt, creating a list of of the presidents' last names. Then, use a list
comprehension to make a copy of the list of names in upper case. Finally, loop through the list
returned by the list comprehension and print out the names one per line.

Exercise 1-2 (pres_by_dob.py)

Print out all the presidents first and last names, date of birth, and their political affiliations, sorted by
date of birth.

Read the presidents.txt file, putting the four fields into a list of tuples.

Loop through the list, sorting by date of birth, and printing the information for each president. Use
sorted() and a lambda function.

Exercise 1-3 (pres_gen.py)

Write a generator function to provide a sequence of the names of presidents (in "FIRSTNAME
MIDDLENAME LASTNAME" format) from the presidents.txt file. They should be provided in the same
order they are in the file. You should not read the entire file into memory, but one-at-a-time from the
file.

Then iterate over the the generator returned by your function and print the names.

© 2021 CJ Associates (rev1.0) Chapter 1: Pythonic Programming

44 Intermediate Python

Chapter 1: Pythonic Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 45

Chapter 2: Functions Modules Packages

Objectives

* Define functions

* Learn the four kinds of function parameters
* Create new modules

* Load modules with import

* Set module search locations

* Organize modules into packages

* Alias module and package names

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

46 Intermediate Python

Functions

e Defined with def
* Accept parameters

» Return a value
Functions are a way of isolating code that is needed in more than one place, refactoring code to make it
more modular. They are defined with the def statement.

Functions can take various types of parameters, as described on the following page. Parameter types
are dynamic.

Functions can return one object of any type, using the return statement. If there is no return
statement, the function returns None.

Be sure to separate your business logic (data and calculations) from your presentation

TIP
logic (the user interface).

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python

Example

function_basics.py

#!/usr/bin/env python

def say_hello(): @
print("Hello, world")
print()
@

say_hello() ®

def get_hello():
return "Hello, world" @

h = get_hello() ®
print(h)
print()

def sqrt(num): ®
return num ** .5

sqrt(1234) @
sqrt(2)

= =5
1

print("m is {:.3f} n is {:.3f}".format(m, n))

© 2021 CJ Associates (rev1.0)

47

Chapter 2: Functions Modules Packages

48 Intermediate Python

@ Function takes no parameters

@ If no return statement, return None
® Call function (arguments, if any, in ())
@ Function returns value

® Store return value in h

® Function takes exactly one argument

@ Call function with one argument

function_basics.py
Hello, world
Hello, world

m is 35.128 n is 1.414

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 49
Function parameters

» Positional or named
* Required or optional

* Can have default values
Functions can accept both positional and named parameters. Furthermore, parameters can be
required or optional. They must be specified in the order presented here.

The first set of parameters, if any, is a set of comma-separated names. These are all required. Next you
can specify a variable preceded by an asterisk — this will accept any optional parameters.

After the optional positional parameters you can specify required named parameters. These must
come after the optional parameters. If there are no optional parameters, you can use a plain asterisk as
a placeholder. Finally, you can specify a variable preceded by two asterisks to accept optional named
parameters.

POSITIONAL NAMED

REQUIRED
OPTIONAL ,P
/_A_\ A f —A_W '

def func(pl, p2, *p3, p4, p5, **p6):

REQUIRED

pass AKA Keyword-Only

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

50 Intermediate Python

Example

function_parameters.py
#!/usr/bin/env python

def fun_one(): @
print("Hello, world")

print("fun_one():", end=" ")
fun_one()
print()

def fun_two(n): @
return n ** 2

x = fun_two(5)
print("fun_two(5) is {}\n".format(x))

def fun_three(count=3): ®
for _ in range(count):
print("spam", end=" ")
print()

fun_three()
fun_three(10)
print()

def fun_four(n, *opt): @
print("fun_four():")
print("n is ", n)
print("opt is", opt)
print('-" * 20)

fun_four('apple')
fun_four('apple', "blueberry", "peach", "cherry")

def fun_five(*, spam=0, eggs=0): ®
print("fun_five():")
print("spam is:", spam)

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 51

print("eggs is:", eggs)
print()

fun_five(spam=1, eggs=2)
fun_five(eggs=2, spam=2)
fun_five(spam=1)
fun_five(eggs=2)
fun_five()

def fun_six(**named_args): ®
print("fun_six():")
for name in named_args:
print(name, "==> ", named_args[name])

fun_six(name="Lancelot", quest="Grail", color="red")

@ no parameters

@ one required parameter

® one required parameter with default value
@ one fixed, plus optional parameters

® keyword-only parameters

® keyword (named) parameters

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

52 Intermediate Python

function_parameters.py
fun_one(): Hello, world
fun_two(5) is 25

Spam spam spam
Spam spam Spam Spam Spam Spam Spam Spam Spam Spam

fun_four():

n is apple

opt is ()

fun_four():

n is apple

opt is ('blueberry', 'peach', 'cherry")

fun_five():
spam is: 1
eggs is: 2
fun_five():
spam is: 2
eggs is: 2
fun_five():
spam is: 1
eggs is: 0
fun_five():
spam is: 0
eggs is: 2
fun_five():
spam is: 0
eggs is: 0
fun_six():

name ==> Lancelot
quest ==> Grail
color ==> red

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 53
Default parameters

» Assigned with equals sign

 Used if no values passed to function

Required parameters can have default values. They are assigned to parameters with the equals sign.
Parameters without defaults cannot be specified after parameters with defaults.

Example

default_parameters.py
#!/usr/bin/env python

def spam(greeting, whom='world'): @
print("{}, {}".format(greeting, whom))

spam("Hello", "Mom") @
spam("Hello") ®
print()

def ham(*, file_name, file format='txt'): @
print("Processing {} as {}".format(file_name, file_format))

ham(file_name='eggs') ®
ham(file_name='toast', file format="csv')
@ 'world' is default value for positional parameter whom
@ parameter supplied; default not used
® parameter not supplied; default is used
@ 'world' is default value for named parameter format

® parameter format not supplied; default is used

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

54 Intermediate Python

default_parameters.py

Hello, Mom
Hello, world

Processing eggs as txt
Processing toast as csv

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 55

Python Function parameter behavior (from PEP 3102)

For each formal parameter, there is a slot which will be used to contain the value of the argument
assigned to that parameter.

Slots which have had values assigned to them are marked as 'filled'. Slots which have no value
assigned to them yet are considered 'empty'.

Initially, all slots are marked as empty.

Positional arguments are assigned first, followed by keyword arguments.
* For each positional argument:

o Attempt to bind the argument to the first unfilled parameter slot. If the slot is not a vararg slot,
then mark the slot as 'filled'".

o If the next unfilled slot is a vararg slot, and it does not have a name, then it is an error.

o Otherwise, if the next unfilled slot is a vararg slot then all remaining non-keyword arguments
are placed into the vararg slot.

* For each keyword argument:

o If there is a parameter with the same name as the keyword, then the argument value is
assigned to that parameter slot. However, if the parameter slot is already filled, then that is an
error.

o Otherwise, if there is a 'keyword dictionary' argument, the argument is added to the dictionary
using the keyword name as the dictionary key, unless there is already an entry with that key, in
which case it is an error.

o Otherwise, if there is no keyword dictionary, and no matching named parameter, then it is an
error.

* Finally:
o If the vararg slot is not yet filled, assign an empty tuple as its value.

- For each remaining empty slot: if there is a default value for that slot, then fill the slot with the
default value. If there is no default value, then it is an error.

* In accordance with the current Python implementation, any errors encountered will be signaled by
raising TypeError.

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

56 Intermediate Python
Name resolution (AKA Scope)

* What is "scope"?
» Scopes used dynamically
* Four levels of scope

» Assignments always go into the innermost scope (starting with local)
A scope is the area of a Python program where an unqualified (not preceded by a module name) name
can be looked up.

Scopes are used dynamically. There are four nested scopes that are searched for names in the
following order:

local local names bound within a function

nonlocal local names plus local names of outer function(s)
global the current module’s global names

builtin built-in functions (contents of _builtins_ module)

Within a function, all assignments and declarations create local names. All variables found outside of
local scope (that is, outside of the function) are read-only.

Inside functions, local scope references the local names of the current function. Outside functions,
local scope is the same as the global scope — the module’s namespace. Class definitions also create a
local scope.

Nested functions provide another scope. Code in function B which is defined inside function A has
read-only access to all of A’s variables. This is called nonlocal scope.

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 57

Example

scope_examples.py
#!/usr/bin/env python

x =42 @

def function_a():

y=5 @

def function_b():
z=32 ®
print("function_b(): z is", z) @
print("function_b(): y is", y) ®
print("function_b(): x is", x) ®
print("function_b(): type(x) is", type(x)) @

return function_b

f = function_a()
f) ©

@ global variable

@ local variable to function_a(), or nonlocal to function_b()
® local variable

@ local scope

® nested (nonlocal) scope

® global scope

@ builtin scope

calling function_a, which returns function_b

© calling function_b

scope_examples.py

function_b(): z is 32
function_b(): y is 5
function_b(): x is 42
function_b(): type(x) is <class 'int'>

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

The global statement

* global statement allows function to change globals

* nonlocal statement allows function to change nonlocals

The global keyword allows a function to modify a global variable. This is universally acknowledged as
a BAD IDEA. Mutating global data can lead to all sorts of hard-to-diagnose bugs, because a function
might change a global that affects some other part of the program. It’s better to pass data into functions
as parameters and return data as needed. Mutable objects, such as lists, sets, and dictionaries can be
modified in-place.

The nonlocal keyword can be used like global to make nonlocal variables in an outer function
writable.

global

Intermediate Python 59
Modules

* Files containing python code
* End with .py

* No real difference from scripts

A module is a file containing Python definitions and statements. The file name is the module name
with the suffix .py appended. Within a module, the module’s name (as a string) is available as the value
of the global variable name.

To use a module named spam.py, say import spam

This does not enter the names of the functions defined in spam directly into the symbol table; it only
adds the module name spam. Use the module name to access the functions or other attributes.

Python uses modules to contain functions that can be loaded as needed by scripts. A simple module
contains one or more functions; more complex modules can contain initialization code as well. Python
classes are also implemented as modules.

A module is only loaded once, even there are multiple places in an application that import it.

Modules and packages should be documented with docstrings.

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

60 Intermediate Python
Using import

* import statement loads modules
» Three variations
o import module
o from module import function-list

o from module import * use with caution!

There are three variations on the import statement:

Variation 1

import module
loads the module so its data and functions can be used, but does not put its attributes (names of
classes, functions, and variables) into the current namespace.

Variation 2

from module import function, ...
imports only the function(s) specified into the current namespace. Other functions are not available
(even though they are loaded into memory).

Variation 3

from module import *

loads the module, and imports all functions that do not start with an underscore into the current
namespace. This should be used with caution, as it can pollute the current namespace and possibly
overwrite builtin attributes or attributes from a different module.

The first time a module is loaded, the interpreter creates a version compiled for faster

NOTE loading. This version has platform information embedded in the name, and has the
extension .pyc. These .pyc files are put in a folder named __pycache__.

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 61
Example
samplelib.py
#!/usr/bin/env python
sample Python module
def spam():
print("Hello from spam()")

def ham():
print("Hello from ham()")

def _eggs():
print("Hello from _eggs()")

use_samplelib1.py

#!/usr/bin/env python
import samplelib @

samplelib.spam() @
samplelib.ham()

@ import samplelib module (samplelib.py) — creates object named samplelib of type "Module"

@ call function spam() in module samplelib

use_samplelib1.py

Hello from spam()
Hello from ham()

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

62 Intermediate Python
use_samplelib2.py

#!/usr/bin/env python
from samplelib import spam, ham @

spam() @
ham()

@ import functions spam and ham from samplelib module into current namespace — does not create
the module object

@ module name not needed to call function spam()

use_samplelib2.py

Hello from spam()
Hello from ham()

use_samplelib3.py

#!/usr/bin/env python
from samplelib import * @

spam() @
ham()

@ import all functions (that do not start with _) from samplelib module into current namespace

@ module name not needed to call function spam()

use_samplelib3.py

Hello from spam()
Hello from ham()

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python
use_samplelib4.py

#!/usr/bin/env python
from samplelib import spam as pig, ham as hog @

pig()
hog()

@ import functions spam and ham, aliased to pig and hog

use_samplelib4.py

Hello from spam()
Hello from ham()

© 2021 CJ Associates (rev1.0)

63

Chapter 2: Functions Modules Packages

64 Intermediate Python
How import * can be dangerous

* Imported names may overwrite existing names

* Be careful to read the documentation

Using import * to import all public names from a module has a bit of a risk. While generally harmless,
there is the chance that you will unknowingly import a module that overwrites some previously-
imported module.

To be 100% certain, always import the entire module, or else import names explicitly.

Examples

electrical.py
#!/usr/bin/env python
default_amps = 10
default_voltage = 110
default _current = "AC'

def amps():
return default_amps

def voltage():
return default_voltage

def current():
return default_current

navigation.py
#!/usr/bin/env python
current_types = 'slow medium fast'.split()

def current():
return current_types[0]

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 65
why_import_star_is_bad.py
#!/usr/bin/env python

from electrical import * @
from navigation import * @

print(current()) ®
print(voltage())
print(amps())

@ import current explicitly from electrical
@ import current implicitly from navigation

® calls navigation.current(), not electrical.current()

why_import_star_is_bad.py
slow

110
10

how_to_avoid_import_star.py
#!/usr/bin/env python
import electrical as e @

import navigation as n @

print(e.current()) ®
print(n.current()) @

how_to_avoid_import_star.py

AC
slow

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

66 Intermediate Python
Module search path

» Searches current folder first, then predefined locations
* Add custom locations to PYTHONPATH

 Paths stored in sys.path

When you specify a module to load with the import statement, it first looks in the current directory,
and then searches the directories listed in sys.path.

>>> import sys
>>> sys.path

To add locations, put one or more directories to search in the PYTHONPATH environment variable.
Separate multiple paths by semicolons for Windows, or colons for Unix/Linux. This will add them to
sys.path, after the current folder, but before the predefined locations.

Windows
set PYTHONPATH=C:\Users\bob\Documents and settings\Python

Linux/0S X
export PYTHONPATH="/home/bob/python"

You can also append to sys.path in your scripts, but this can result in non-portable scripts, and scripts
that will fail if the location of the imported modules changes.

import sys
sys.path.extend("/usr/dev/python/1ibs","/home/bob/pylib")
import moduleT

import module2

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 67
Executing modules as scripts

e name is current module.
o setto __main__if run as script
o set to module_name if imported

e test with if name == "_main__

* Module can be both run directly and imported
It is sometimes convenient to have a module also be a runnable script. This is handy for testing and
debugging, and for providing modules that also can be used as standalone utilities.

Since the interpreter defines its own name as '__main__', you can test the current namespace’s name
attribute. If it is'__main__', then you are at the main (top) level of the interpreter, and your file is being
run as a script; it was not loaded as a module.

Any code in a module that is not contained in function or method is executed when the module is
imported.

This can include data assignments and other startup tasks, for example connecting to a database or
opening a file.

Many modules do not need any initialization code.

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

68 Intermediate Python

Example

using_main.py

#!/usr/bin/env python
import sys

other imports (standard library, standard non-library, local)
constants (AKA global variables)

main function

def main(args): @
function1()
function2()

other functions
def functionl1():
print("hello from function1()")

def function2():
print("hello from function2()")

if __name__ == "__main__
main(sys.argv[1:]) @

@ Program entry point. While main is not a reserved word, it is a strong convention

@ Call main() with the command line parameters (omitting the script itself)

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 69
Packages

» Package is folder containing modules or packages

* Startup code goes in __init__.py (optional)

A package is a group of related modules or subpackages. The grouping is physical — a package is a
folder that contains one or more modules. It is a way of giving a hierarchical structure to the module
namespace so that all modules do not live in the same folder.

A package may have an initialization script named __init__.py. If present, this script is executed when
the package or any of its contents are loaded. (In Python 2, __init__.py was required).

Modules in packages are accessed by prefixing the module with the package name, using the dot
notation used to access module attributes.

Thus, if Module eggs is in package spam, to call the scramble() function in eggs, you would say
spam.eggs.scramble().

By default, importing a package name by itself has no effect; you must explicitly load the modules in
the packages. You should usually import the module using its package name, like from spam import
eggs, to import the eggs module from the spam package.

Packages can be nested.

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

70

Example
sound/
__init__.py
formats/
__init__.py
wavread.py

wavwrite.py
aiffread.py
aiffwrite.py

auread.py
auwrite.py
effects/
__init__.py
echo.py
surround. py
reverse.py
filters/
__init__.py

equalizer.py

Top-level package

Initialize the sound package (optional)
Subpackage for file formats

Initialize the formats package (optional)

Subpackage for sound effects
Initialize the formats package (optional)

Subpackage for filters
Initialize the formats package (optional)

from sound.formats import aiffread
from sound.effects.surround import dolby
import sound.filters.equalizer as eq

Chapter 2: Functions Modules Packages

Intermediate Python

© 2021 CJ Associates (rev1.0)

Intermediate Python

Example: Core Django packages

django

django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.

apps

conf.urls

conf.urls.il8n

contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.

contrib.

contrib

contrib

contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.
contrib.

contrib.

.gis

.gis

admi
admi

auth

auth.
auth.
auth.
auth.
auth.
auth.

auth
cont
cont
cont
cont
flat
gis
gis
gis
gis
gis
gis.
gis.
gis.
gis

gis

gis.
gis
gis
gis.
huma
mess
mess
post
post
post

n

ndocs

backends

forms

hashers

middleware
password_validation
signals

.views

enttypes
enttypes.admin
enttypes.fields

enttypes.forms

pages

.admin
.db.backends
.db.models

.db.models. functions

feeds
forms

forms.widgets

.gdal
.geoip2
.geos

.measure

serializers.geojson

.utils

.utils.layermapping

utils.ogrinspect
nize

ages
ages.middleware
gres
gres.aggregates

gres.constraints

© 2021 CJ Associates (rev1.0)

django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.
django.

71

contrib.postgres.indexes

contrib.postgres.validators

contrib.redirects

contrib.sessions

contrib.sessions.middleware

contrib.sitemaps

contrib.sites

contrib.sites.middleware

contrib.staticfiles

contrib.syndication

core.checks

core.exceptions

core.files

core.files.storage

core.files.uploadedfile

core.files.uploadhandler

core.mail

core.management

core.paginator

core.signals

core.signing

core.validators

db

db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.
db.

backends
backends.base.schema
migrations
migrations.operations
models
models.constraints
models.fields
models.fields.related
models. functions
models.indexes
models.lookups
models.options
models.signals

transaction

dispatch

forms

forms.fields

forms.formsets

Chapter 2: Functions Modules Packages

72 Intermediate Python

django.forms.models django.urls.conf
django.forms.renderers django.utils
django.forms.widgets django.utils.cache
django.http django.utils.dateparse
django.middleware django.utils.decorators
django.middleware.cache django.utils.encoding
django.middleware.clickjacking django.utils.feedgenerator
django.middleware.common django.utils.functional
django.middleware.csrf django.utils.html
django.middleware.gzip django.utils.http
django.middleware.http django.utils.log
django.middleware.locale django.utils.module_loading
django.middleware.security django.utils.safestring
django.shortcuts django.utils.text
django.template django.utils.timezone
django.template.backends django.utils.translation
django.template.backends.django django.views
django.template.backends. jinja2 django.views.decorators.cache
django.template.loader django.views.decorators.csrf
django.template.response django.views.decorators.gzip
django.test django.views.decorators.http
django.test.signals django.views.decorators.vary
django.test.utils django.views.generic.dates
django.urls django.views.il8n

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 73
Configuring import with __init_ .py

* Provide package documentation
* Load modules into package’s namespace for convenience
o Specify modules to load when * is used

» Execute startup code

The docstring in __init_ .py is used to document the package itself. This is used by IDEs as well as
pydoc.

For convenience, you can put import statements in a package’s __init__.py to autoload the modules into
the package namespace, so that import PKG imports all the (or just selected) modules in the package.

If the variable __all__in __init_ .py is set to a list of module names, then only these modules will be
loaded when the import is

__init__.py can also be used to setup data or other resources that will be used by multiple modules
within a package.

from PKG import *

Given the following package and module layout, the table on the next page describes how __init__.py
affects imports.

my_package

|------ __init__.py

|------ module_a.py

| function_a()

[------ module_b.py

| function_b()

|------ module_c.py
function_c()

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

74 Intermediate Python

Import statement What it does
If _init__.py is empty

import my_package Imports my_package only, but not contents. No modules are
imported. This is not useful.

import my_package.module_a Imports module_a into my_package namespace. Objects in
module_a must be prefixed with my_package.module_a

from my_package import module_a Imports module_a into main namespace. Objects in
module_a must be prefixed with module_a

from my_package import module_a, Imports module_a and module_b into main namespace.

module_b

from my_package import * Does not import anything!

from my_package.module_a import * Imports all contents of module_a (that do not start with an
underscore) into main namespace. Not generally
recommended.

If _init__.py contains:
all = ['module_a', 'module_b']

import my_package Imports my_package only, but not contents. No modules are
imported. This is still not useful.

from my_package import module_a As before, imports module_a into main namespace. Objects
in module_a must be prefixed with module_a

from my_package import * Imports module_a and module_b, but not module_c into
main namespace.

If _init__.py contains:

all = ['module_a", 'module_b'] import
module_a

import module_b

import my_package Imports module_a and module_b into the my_package
namespace. Objects in module_a must be prefixed with
my_package.module_a. Now this is useful.

from my_package import module_a Imports module_a into main namespace. Objects in
module_a must be prefixed with module_a

from my_package import * Only imports module_a and module_b into main
namespace.
from my_package import module_c Imports module_c into the main namespace.

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 75
Documenting modules and packages

* Use docstrings
» Described in PEP 257

» Generate docs with Sphinx (optional)
In addition to comments, which are for the maintainer of your code, you should add docstrings, which
provide documentation for the user of your code.

If the first statement in a module, function, or class is an unassigned string, it is assigned as the
docstring of that object. It is stored in the special attribute _doc_, and so is available to code.

The docstring can use any form of literal string, but triple double quotes are preferred, for consistency.
See PEP 257 for a detailed guide on docstring conventions.

Tools such as pydoc, and many IDEs will use the information in docstrings. In addition, the Sphinx tool
will gather docstrings from an entire project and format them as a single HTML, PDF, or EPUB
document.

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

76 Intermediate Python
Python style

e Code is read more often than it is written!

* Style guides enforce consistency and readability

* Indent 4 spaces (do not use tabs)

* Keep lines < 79 characters

* Imports at top of script, and on separate lines

* Surround operators with space

* Comment thoroughly to explain why and how code works when not obvious

» Use docstrings to explain how to use modules, classes, methods, and functions

» Use lower_case_with_underscores for functions, methods, and attributes

» Use UPPER_CASE_WITH_UNDERSCORES for globals

» Use StudlyCaps (mixed-case) for class names

» Use _leading_underscore for internal (non-API) attributes
Guido van Rossum, Python’s BDFL (Benevolent Dictator For Life), once said that code is read much
more often than it is written. This means that once code is written, it may be read by the original

developer, users, subsequent developers who inherit your code. Do them a favor and make your code
readable. This in turn makes your code more maintainable.

To make your code readable, it is import to write your code in a consistent manner. There are several
Python style guides available, including PEP (Python Enhancement Proposal) 8, Style Guide for Python
Code, and PEP 257, Docstring Conventions.

If you are part of a development team, it is a good practice to put together a style guide for the team.
The team will save time not having to figure out each other’s style.

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 77

Chapter 2 Exercises

Exercise 2-1 (potus.py, potus_main.py)

Create a module named potus (potus.py) to provide information from the presidents.txt file. It should
provide the following function:

get_info(term#) -> dict provide dictionary of info for a specified president

Write a script to use the module.

For the ambitious (potus_amb.py, potus_amb_main.py)

Add the following functions to the module

get_oldest() -> string return the name of oldest president
get_youngest()-> string return the name of youngest president

'youngest' and 'oldest’ refer to age at beginning of first term and age at end of last term.

© 2021 CJ Associates (rev1.0) Chapter 2: Functions Modules Packages

78 Intermediate Python

Chapter 2: Functions Modules Packages © 2021 CJ Associates (rev1.0)

Intermediate Python 79

Chapter 3: Intermediate Classes
Objectives

» Defining a class and its constructor

* Creating object methods

» Adding properties to a class

» Working with class data and methods
* Leveraging inheritance for code reuse
* Implementing special methods

* Knowing when NOT to use classes

Random historic note: if I hadn’t chosen the __dunder__ naming scheme for
Python language internals long ago, dunders would have been an obscure
feature of the C preprocessor.

— Guido van Rossum, Twitter, April 2020

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

80 Intermediate Python
What is a class?

* Represents a thing
» Encapsulates functions and variables
» Creator of object instances

* Basic unit of object-oriented programming

A class is definition that represents a thing. The thing could be a file, a process, a database record, a
strategy, a string, a person, or a truck.

The class describes both data, which represents one instance of the thing, and methods, which are
functions that act upon the data. There can be both class data, which is shared by all instances, and
instance data, which is only accessible from the instance.

Classes are a very powerful tool to organize code. However, there are some circumstances
in Python where classes are not needed. If you just need some functions, and they don’t

TIP need to share or remember data, just put the functions in a module. If you just need some
data, but you don’t need functions to process it, just used a nested data structure built out
of dictionaries, lists, and tuples, as needed.

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python 81
Defining Classes

* Syntax

class ClassName(base class,...):
class body 0 methods and data

* Specify base classes

» Use StudlyCaps for name

The class statement defines a class and assigns it to a name.

The simplest form of class definition looks like this:

class ClassName():
pass

Normally, the contents of a class definition will be method definitions and shared data.

A class definition creates a new local namespace. All variable assignments go into this new namespace.
All methods are called via the instance or the class name.

A list of base classes may be specified in parentheses after the class name.

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

82 Intermediate Python
Object Instances

e Call class name as a function
* self contains attributes

e Syntax

obj = ClassName(args...)

An object instance is an object created from a class. Each object instance has its own private attributes,
which are usually created in the __init__() method.

For an entertaining explanation of how classes work in Python, see Raymond

NOTE Hettinger’s talk Python’s Class Development Toolkit: https://www.youtube.com/
watch?v=HTLu2DFOdTg

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

https://www.youtube.com/watch?v=HTLu2DFOdTg
https://www.youtube.com/watch?v=HTLu2DFOdTg

Intermediate Python 83

Instance attributes

* Methods and data
» Accessed using dot notation

 Privacy by convention (_name)

An instance of a class (AKA object) normally contains methods and data. To access these attributes, use
"dot notation": object.attribute.

Instance attributes are dynamic; they can be accessed directly from the object. You can create, update,
and delete attributes in this way.

Attributes cannot be made private, but names that begin with an underscore are understood by
convention to be for internal use only. Users of your class will not consider methods that begin with an
underscore to be part of your class’s API.

Example

class Spam():
def eggs(self):
pass

def _beverage(self): # private!
pass

s = Spam()

s.eggs()

s.toast = 'buttered'
print(s.toast)

s._beverage() # legal, but wrong!

Note that you can just create an attribute named toast without defining it anywhere. However, in most
cases, it is better to use properties (described later) to access data attributes.

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

84 Intermediate Python

Instance Methods

* Called from objects

* Object is implicit parameter

An instance method is a function defined in a class. When a method is called from an object, the object
is passed in as the implicit first parameter, named self by strong convention.

Example

rabbit.py
#!/usr/bin/env python
class Rabbit:

def __init__(self, size, danger): @
self. size = size
self._danger = danger
self. victims = []

def threaten(self): @
print("I am a {} bunny with {}!".format(self._size, self._danger))

r1 = Rabbit('large', "sharp, pointy teeth") &
r1.threaten() @

r2 = Rabbit('small', 'fluffy fur')
r2.threaten()

® constructor, passed self

@ instance method, passed self

® pass parameters to constructor

@ instance method has access to variables via self

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python 85

rabbit.py

I am a large bunny with sharp, pointy teeth!
I am a small bunny with fluffy fur!

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

86

Constructors

e Named init ()

» Implicitly called when object is created

» self is object itself

Intermediate Python

If a class defines a method named __init_ (), it will be automatically called when an object instance is
created. This is the constructor.

The object being created is implicitly passed as the first parameter to __init_ () . This parameter is
named self by very strong convention. Data attributes can be assigned to self. These attributes can
then be accessed by other methods.

Example

class Rabbit:

def

TIP

__init__(self, size, danger):
self._size = size
self._danger = danger

self. victims = []

In C++, Java, and C#, self might be called this.

Chapter 3: Intermediate Classes

© 2021 CJ Associates (rev1.0)

Intermediate Python

Getters and setters

* Used to access data

o AKA accessors and mutators

* Most people prefer properties (see next topic)

87

Getter and setter methods can be used to access an object’s data. These are traditional in object-

oriented programming.

A getter method retrieves data (e.g., from a private variable) from self. A setter method assigns a value

to a variable.

NOTE Most Python developers use properties, described next, instead of getters and setters.

Example

class Knight(object):

def __init__(self,name):

self. _name = name

def set _name(self,name):

self. _name = name

def get_name(self):
return self._name

k = Knight("Lancelot")
print(k.get_name())

© 2021 CJ Associates (rev1.0)

Chapter 3: Intermediate Classes

88 Intermediate Python
Properties

* Accessed like variables
* Invoke implicit getters and setters

* Can be read-only
While object attributes can be accessed directly, in many cases the class needs to exercise some control
over the attributes.

A more elegant approach is to use properties. A property is a kind of managed attribute. Properties are
accessed directly, like normal attributes (variables), but getter, setter, and deleter functions are
implicitly called, so that the class can control what values are stored or retrieved from the attributes.

You can create getter, setter, and deleter properties.

To create the getter property (which must be created first), apply the @property decorator to a method
with the name you want. It receives no parameters other than self.

To create the setter property, create another function with the property name (yes, there will be two
function definitions with the same name). Decorate this with the property name plus ".setter". In other
words, if the property is named "spam", the decorator will be "@spam.setter". The setter method will
take one parameter (other than self), which is the value assigned to the property.

It is common for a setter property to raise an error if the value being assigned is invalid.

While you seldom need a deleter property, creating it is the same as for a setter property, but use
"@propertyname.deleter".

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python

Example

knight.py

#!/usr/bin/env python

class Knight():

def __init__(self, name, title, color):

self. _name = name
self. title = title
self. color = color

@property @
def name(self): @
return self. _name

@property
def color(self):
return self. color

@color.setter ®
def color(self, color):
self. color = color

@property
def title(self):
return self. title

1

if __name__ == ' main__

k = Knight("Lancelot", "Sir", 'blue')

Bridgekeeper's question

89

print('Sir {}, what is your...favorite color?'.format(k.name)) @

Knight's answer

print("red, no -- {}!".format(k.color))

k.color = 'red' ®

print("color is now:", k.color)

© 2021 CJ Associates (rev1.0)

Chapter 3: Intermediate Classes

90 Intermediate Python

@ getter property decorator

@ property implemented by name() method
® setter property decorator

@ use property

® set property

knight.py

Sir Lancelot, what is your...favorite color?
red, no -- blue!
color is now: red

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python 91

Class Data

o Attached to class, not instance

» Shared by all instances

Data can be attached to the class itself, and shared among all instances. Class data can be accessed via
the class name from inside or outside of the class.

Any class attribute not overwritten by an instance attribute is also available through the instance.

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

92 Intermediate Python

Example

class_data.py
#!/usr/bin/env python

class Rabbit:
LOCATION = "the Cave of Caerbannog" @

def __init__(self, weapon):
self.weapon = weapon

def display(self):
print("This rabbit guarding {} uses {} as a weapon".
format(self.LOCATION, self.weapon)) @

r1 = Rabbit("a nice cup of tea")
r1.display() ®

r1 = Rabbit("big pointy teeth")
r1.display() ®

@ class data
@ look up class data via instance

@ instance method uses class data

class_data.py

This rabbit guarding the Cave of Caerbannog uses a nice cup of tea as a weapon
This rabbit guarding the Cave of Caerbannog uses big pointy teeth as a weapon

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python 93
Class Methods

e Called from class or instance
* Use @classmethod to define

* First (implicit) parameter named "cls" by convention

If a method only needs class attributes, it can be made a class method via the @classmethod decorator.
This alters the method so that it gets a copy of the class object rather than the instance object. This is
true whether the method is called from the class or from an instance.

The parameter to a class method is named cls by strong convention.

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

94 Intermediate Python

Example

class_methods_and_data.py
#!/usr/bin/env python

class Rabbit:
LOCATION = "the Cave of Caerbannog" @

def __init__(self, weapon):
self.weapon = weapon

def display(self):
print("This rabbit guarding {} uses {} as a weapon".
format(self.LOCATION, self.weapon)) @

@classmethod ®
def get_location(cls): @
return cls.LOCATION ®

r = Rabbit("a nice cup of tea")
print(Rabbit.get_location()) ®
print(r.get_location()) @

@ class data (not duplicated in instances)

@ instance method

® the @classmethod decorator makes a function receive the class object, not the instance object
@ *get_location() is a class method

® class methods can access class data via cls

® call class method from class

@ call class method from instance

class_methods_and_data.py

the Cave of Caerbannog
the Cave of Caerbannog

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python 95
Inheritance

 Specify base class in class definition

* Call base class constructor explicitly

Any language that supports classes supports inheritance. One or more base classes may be specified as
part of the class definition. All of the previous examples in this chapter have used the default base
class, object.

The base class must already be imported, if necessary. If a requested attribute is not found in the class,
the search looks in the base class. This rule is applied recursively if the base class itself is derived from
some other class. For instance, all classes inherit the implementation from object, unless a class
explicitly implements it.

Classes may override methods of their base classes. (For Java and C++ programmers: all methods in
Python are effectively virtual.)

To extend rather than simply replace a base class method, call the base class method directly:
BaseClassName.methodname(self, arguments).

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

96 Intermediate Python

Using super()

Follows MRO (method resolution order) to find function
» Great for single inheritance tree
* Use explicit base class names for multiple inheritance

» Syntax:

super().method()

The super() function can be used in a class to invoke methods in base classes. It searches the base
classes and their bases, recursively, from left to right until the method is found.

The advantage of super() is that you don’t have to specify the base class explicitly, so if you change the
base class, it automatically does the right thing.

For classes that have a single inheritance tree, this works great. For classes that have a diamond-
shaped tree, super() may not do what you expect. In this case, using the explicit base class name is best.

class Foo(Bar):
def __init__(self):
super().__init__() # same as Bar._init__(self)

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python

Example

animal.py

class Animal():
count =0 @

def __init__(self, species, name, sound):
self._species = species
self. _name = name
self._sound = sound
Animal.count += 1

@property
def species(self):
return self._species

@classmethod
def kill(cls):
cls.count -= 1

@property
def name(self):
return self. _name

def make_sound(self):
print(self._sound)

@classmethod
def remove(cls):
cls.count -=1 @

@classmethod
def zoo size(cls): ®
return cls.count

if __name__ == "_main__
leo = Animal("African lion", "Leo", "Roarrrrrrr")
garfield = Animal("cat", "Garfield", "Meowwwww")
felix = Animal("cat", "Felix", "Meowwwww")

for animal in leo, garfield, felix:
print(animal.name, "is a", animal.species, "--", end=" ")
animal.make_sound()

@ class data

© 2021 CJ Associates (rev1.0)

97

Chapter 3: Intermediate Classes

98 Intermediate Python

@ update class data from instance

® zoo_size gets class object when called from instance or class

insect.py
#!/usr/bin/env python

from animal import Animal

class Insect(Animal):

An animal with 2 sets of wings and 3 pairs of legs

def __init__(self, species, name, sound, can_fly=True): @
super().__init__(species, name, sound) @
self._can_fly = can_fly

@property
def can_fly(self): @&
return self._can_fly

if __name__ == '_main__
mon = Insect('monarch butterfly', 'Mary', None) @
scar = Insect('scarab beetle', 'Rupert', 'Bzzz', False)

for insect in mon, scar:
flying_status = 'can' if insect.can_fly else "can't"
print("Hi! I am {} the {} and I {} fly!".format(®
insect.name, insect.species, flying_status
)
)

insect.make_sound() ®
print()

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python

@ constructor (AKA initializer)

@ call base class constructor

® "getter" property

@ defaults to can_fly being True

® .name and .species inherited from base class (Animal)

® .make_sound inherited from Animal

insect.py

Hi! I am Mary the monarch butterfly and I can fly!
None

Hi! I am Rupert the scarab beetle and I can't fly!
Bzzz

© 2021 CJ Associates (rev1.0)

Chapter 3: Intermediate Classes

99

100 Intermediate Python

Multiple Inheritance

* More than one base class
o All data and methods are inherited

* Methods resolved left-to-right, depth-first

Python classes can inherit from more than one base class. This is called "multiple inheritance".
Classes designed to be added to a base class are sometimes called "mixin classes", or just "mixins".

Methods are searched for in the first base class, then its parents, then the second base class and
parents, and so forth.

Put the "extra" classes before the main base class, so any methods in those classes will override
methods with the same name in the base class.

TP To find the exact method resolution order (MRO) for a class, call the class’s mro() method.

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python 101

Example

multiple_inheritance.py

#!/usr/bin/env python
class AnimalBase(): @
def __init__(self, name):
self. name = name

def get_id(self):
print(self._name)

class CanBark(): @
def bark(self):
print("woof-woof")

class CanFly(): @
def fly(self):
print("I'm flying")

class Dog(CanBark, AnimalBase): ®
pass

class Sparrow(CanFly, AnimalBase): ®
pass

d = Dog('Dennis")
d.get_id() @
d.bark() ®
print()

s = Sparrow('Steve")
s.get_id()

s.fly() ®

print()

print("Sparrow mro:", Sparrow.mro())

@ create primary base class

@ create additional (mixin) base class

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

102 Intermediate Python

® inherit from primary base class plus mixin
@ all animals have id()
® dogs can bark() (from mixin)

® sparrows can fly() (from mixin)

multiple_inheritance.py

Dennis
woof-woof

Steve
I'm flying

Sparrow mro: [<class '__main__.Sparrow'>, <class '__main__.CanFly'>, <class
'__main__.AnimalBase'>, <class 'object'>]

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python 103
Abstract base classes

* Designed for inheritance
» Abstract methods must be implemented

* Non-abstract methods may be overwritten

The abc module provides abstract base classes. When a method in an abstract class is designated
abstract, it must be implemented in any derived class. If a method is not marked abstract, it may be
overwritten or extended.

To create an abstract class, import ABCMeta and abstractmethod. Create the base (abstract) class
normally, but assign ABCMeta to the class option metaclass. Then decorated any desired abstract
methods with *@abstractmethod.

Now, any classes that inherit from the base class must implement any abstract methods. Non-abstract
methods do not have to be implemented, but of course will be inherited.

NOTE abc also provides decorators for abstract properties and abstract class methods.

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

104 Intermediate Python

Example

abstract_base_classes.py

#!/usr/bin/env python
i
from abc import ABCMeta, abstractmethod

class Animal(metaclass=ABCMeta): @

@abstractmethod @
def speak(self):
pass

class Dog(Animal): ®
def speak(self): @
print("woof! woof!")

class Cat(Animal): ®
def speak(self): @
print("Meow meow meow")

class Duck(Animal): ®

pass ®

d = Dog()

d.speak()

¢ = Cat()

c.speak()

try:
d = Duck() ®
d.speak()

except TypeError as err:
print(err)

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python 105

@ metaclasses control how classes are created; ABCMeta adds restrictions to classes that inherit from
Animal

@ when decorated with @abstractmethod, speak() becomes an abstract method
® Inherit from abstract base class Animal

@ speak() must be implemented

® Duck does not implement speak()

® Duck throws a TypeError if instantiated

abstract_base_classes.py

woof! woof!
Meow meow meow

Can't instantiate abstract class Duck with abstract methods speak

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

106 Intermediate Python
Special Methods

» User-defined classes emulate standard types
* Define behavior for builtin functions

» Override operators

Python has a set of special methods that can be used to make user-defined classes emulate the
behavior of builtin classes. These methods can be used to define the behavior for builtin functions such
as str(), len() and repr(); they can also be used to override many Python operators, such as +, * and ==.

These methods expect the self parameter, like all instance methods. They frequently take one or more
additional methods. self. Is the object being called from the builtin function, or the left operand of a
binary operator such as ==.

For instance, if your object represented a database connection, you could have str() return the
hostname, port, and maybe the connection string. The default for str() is to call repr(), which returns
something like <main.DBConn object at 0xb7828c6¢>, which is not nearly so user-friendly.

See http://docs.python.org/reference/datamodel.html#special-method-names for detailed

TIP
documentation on the special methods.

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

http://docs.python.org/reference/datamodel.html#special-method-names

Intermediate Python

Table 1. Special Methods and Variables
Method or Variables

__new__(cls,...)

__init_ (self,...)
__del__(self)
__repr__(self)
__str__(self)

__eq__(self, other)
__ne__(self, other)
__gt_ (self, other)
__It_ (self, other)

__ge_ (self, other)
__le (self, other)

__cmp__(self, other)

__hash__(self)

__bool_ (self)

__unicode__(self)

__getattr__(self, name)
__setattr__(self, name, value)
__delattr__(self, name)

__getattribute__(self, name)
__get__ (self, instance)

__del_ (self, instance)

__slots__ = variable-list
__metaclass__ = callable
__instancecheck__ (self, instance)
__subclasscheck (self, instance)
call(self, ..)

len (self)

__getitem__(self, key)

__setitem__(self, key, value)

© 2021 CJ Associates (rev1.0)

107

Description

Returns new object instance; Called before
init

Object initializer (constructor)

Called when object is about to be destroyed
Called by repr() builtin

Called by str() builtin

Implement comparison operators ==, I=, >, <, >=,
and <. self is object on the left.

Called by comparison operators if __eq__, etc., are
not defined

Called by hash() builtin, also used by dict, set, and
frozenset operations

Called by bool() builtin. Implements truth value
(boolean) testing. If not present, bool() uses len()

Called by unicode() builtin

Override normal fetch, store, and deleter

Implement attribute access for new-style classes
__set__(self, instance, value)

Implement descriptors

Allocate space for a fixed number of attributes.
Called instead of type() when class is created.
Return true if instance is an instance of class
Return true if instance is a subclass of class
Called when instance is called as a function.
Called by len() builtin

Implements self[key]

Implements self[key] = value

Chapter 3: Intermediate Classes

108

Method or Variables
__selitem__(self, key)
__iter_ (self)
__reversed__(self)
__contains__(self, object)

__add__(self, other)
__sub__ (self, other)
__mul__(self, other)

_ floordiv__(self, other)
__mod__(self, other)
__divmod__(self, other)
__pow__(self, other[, modulo])
__Ishift (self, other)
__rshift (self, other)
__and__(self, other)
__xor__(self, other)
__or__(self, other)

__div__(self,other)
__truediv__(self,other)

__radd__(self, other)
__rsub_ (self, other)
_rmul__ (self, other)
__rdiv__(self, other)
__rtruediv__(self, other)
_ rfloordiv__(self, other)
__rmod__(self, other)
__rdivmod__(self, other)
__rpow__(self, other)

_ rlshift_ (self, other)

_ rrshift_ (self, other)
__rand__(self, other)
__rxor__(self, other)
__ror__(self, other)

Chapter 3: Intermediate Classes

Intermediate Python

Description

Implements del self[key]

Called when iterator is applied to container
Called by reversed() builtin

Implements in operator

Implement binary arithmetic operators +, -, % //, %,
** <<, >> &, A and |. Self is object on left side of
expression.

Implement binary division operator /. __truediv__
is called if _future_ .division is in effect.

Implement binary arithmetic operators with
swapped operands. (Used if left operand does not
support the corresponding operation)

© 2021 CJ Associates (rev1.0)

Intermediate Python 109

Method or Variables Description
__iadd__(self, other) Implement augmented (+=, -=, etc.) arithmetic
__isub__ (self, other) operators

__imul_ (self, other)
__idiv__ (self, other)
__itruediv__(self, other)
__ifloordiv__(self, other)
__imod__(self, other)
__ipow__(self, other[, modulo])
__ilshift_ (self, other)
__irshift (self, other)
__iand__(self, other)
__ixor_ (self, other)
__ior_ (self, other)

neg (self) Implement unary arithmetic operators -, +, abs(),
__pos__(self) and ~

__abs__(self)

__invert_ (self)

__oct__(self) Implement oct() and hex() builtins

__hex_ (self)

__index_ (self) Implement operator.index()

__coerce__(self, other) Implement "mixed-mode" numeric arithmetic.

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

110 Intermediate Python
specialmethods.py

#!/usr/bin/env python

class Special():

def __init__(self, value):
self. value = str(value) @

def __add__(self, other): @
return self. value + other. value

def __mul__(self, num): ®
return ''.join((self._value for i in range(num)))

def __str__(self): @
return self._value.upper()

def __eq__(self, other): ®
return self. value == other._value

if __name__ == "' main__
= Special('spam')
Special('eggs')
Special\
("spam')
Special(5) ®
Special(22)

S
t
u

= <
1

s", s+s) @

t", s+ t)

t", t+t)

print("s * 10", s * 10)

print("t * 3", t * 3)

print("str(s)={} str(t)={}".format(str(s), str(t)))
print("id(s)={} id(t)={} id(u)={}".format(id(s), id(t), id(u)))
print("s == s", s ==5)

print("s == t", s == t)

print("s == u", s == u)

print("v + v", v + v)

print("s
print("s
print("t

* o+ + + +

print("v + w", v + w)
print("w + w", w + w)
print("v * 10", v * 10)
print("w * 3", w * 3)

@ all Special instances are strings

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python 111

@ define what happens when a Special instance is added to another Special object
® define what happens when a Special instance is multiplied by a value

@ define what happens when str() called on a Special instance

® define equality between two Special valuess

® parameter to Special() is converted to a string

@ add two Special instances

multiply a Special instance by an integer

specialmethods.py

S + S spamspam

s + t spameggs

t + t eggseqgs

s * 10 spamspamspamspamspamspamspamspamspamspam
t * 3 eggseggseqgs

str(s)=SPAM str(t)=EGGS

1d(s)=140335238330768 1d(t)=140335238330832 i1d(u)=140335238331344
s == s True

== t False

== u True

+ v 55

+w 522

+w 2222

* 10 5555555555

* 3222222

= < =E < < 0w

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

112 Intermediate Python

Static Methods

» Related to class, but doesn’t need instance or class object

» Use @staticmethod decorator

A static method is a utility method that is related to the class, but does not need the instance or class
object. Thus, it has no automatic parameter.

One use case for static methods is to factor some kind of logic out of several methods, when the logic
doesn’t require any of the data in the class.

NOTE Static methods are seldom needed.

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python 113

Chapter 3 Exercises

Exercise 3-1 (president.py, president_main.py)

Create a module that implements a President class. This class has a constructor that takes the index
number of the president (1-45) and creates an object containing the associated information from the
presidents.txt file.

Provide the following properties (types indicated after ->):

term_number -> int

first_name -> string

last_name -> string

birth_date -> date object

death_date -> date object (or None, if still alive)
birth_place -> string

birth_state -> string

term_start_date -> date object

term_end_date -> date object (or None, if still in office)
party -> string

Write a main script to exercise some or all of the properties. It could look something like

from president import President

p = President(1) # George Washington
print("George was born at {0}, {1} on {2}".format(
p.birth_place, p.birth_state, p.birth_date

)

© 2021 CJ Associates (rev1.0) Chapter 3: Intermediate Classes

114 Intermediate Python

Chapter 3: Intermediate Classes © 2021 CJ Associates (rev1.0)

Intermediate Python 115

Chapter 4: Metaprogramming
Objectives

* Learn what metaprogramming means

Access local and global variables by name

* Inspect the details of any object

Use attribute functions to manipulate an object
* Design decorators for classes and functions
» Define classes with the type() function

* Create metaclasses

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

116 Intermediate Python

Metaprogramming

Writing code that writes (or at least modifies) code

Can simplify some kinds of programs
* Not as hard as you think!

* Considered deep magic in other languages
Metaprogramming is writing code that generates or modifies other code. It includes fetching, changing,
or deleting attributes, and writing functions that return functions (AKA factories).

Metaprogramming is easier in Python than many other languages. Python provides explicit access to
objects, even the parts that are hidden or restricted in other languages.

For instance, you can easily replace one method with another in a Python class, or even in an object
instance. In Java, this would be deep magic requiring many lines of code.

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 117
globals() and locals()

* Contain all variables in a namespace
» globals() returns all global objects

* locals() returns all local variables

The globals() builtin function returns a dictionary of all global objects. The keys are the object names,
and the values are the objects values. The dictionary is "live" — changes to the dictionary affect global
variables.

The locals() builtin returns a dictionary of all objects in local scope.

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

118 Intermediate Python

Example

globals_locals.py

#!/usr/bin/env python
from pprint import pprint @

spam = 42 @
ham = 'Smithfield’

def eggs(fruit): ®
name = 'Lancelot' @
idiom = 'swashbuckling' @
print("Globals:")
pprint(globals()) ®
print()
print("Locals:")
pprint(locals()) ®

eggs('mango")

@ import prettyprint function

@ global variable

® function parameters are local

@ local variable

® globals() returns dict of all globals

® locals() returns dict of all locals

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 119

globals_locals.py

Globals:
{'__annotations__": {},
" builtins__": <module 'builtins' (built-in)>,
' cached__': None,
' doc__": None,
'__file__"': "/Users/jstrick/curr/courses/python/examples3/globals_locals.py',
'__loader__": <_frozen_importlib_external.SourceFileLoader object at @x7f9bf@@ddcd@>,
' name__': ' _main__",
'__package__": None,
'__spec__": None,

'eggs': <function eggs at 0x7f9bf01a87a0>,
"ham': 'Smithfield',

‘pprint': <function pprint at 0x7f9bf@1a8290>,
"spam': 42}

Locals:
{'fruit': 'mango', 'idiom': 'swashbuckling', 'name': 'Lancelot'}

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

120 Intermediate Python
The inspect module

» Simplifies access to metadata

» Provides user-friendly functions for testing metadata

The inspect module provides user-friendly functions for accessing Python metadata.

Example

inspect_ex.py
#!/usr/bin/env python

import inspect

class Spam: @
pass

def ham(p1, p2="a', *p3, p4, p5='b', **p6): @
print(p1, p2, p3, p4, p5, pb)

for thing in (inspect, Spam, ham):
print("{}: Module? {}. Function? {}. Class? {}".format(
thing.__name__,
inspect.ismodule(thing), ®
inspect.isfunction(thing), @
inspect.isclass(thing), ®

)
print()

print("Function spec for Ham:", inspect.getfullargspec(ham)) ®
print()

print("Current frame:", inspect.getframeinfo(inspect.currentframe())) @

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 121

@ define a class

@ define a function

® test for module

@ test for function

® test for class

® get argument specifications for a function

@ get frame (function call stack) info

inspect_ex.py

inspect: Module? True. Function? False. Class? False
Spam: Module? False. Function? False. Class? True
ham: Module? False. Function? True. (Class? False

Function spec for Ham: FullArgSpec(args=['p1"', 'p2'], varargs="p3"', varkw="p6",
defaults=('a',), kwonlyargs=['p4', 'p5'], kwonlydefaults={'p5': 'b'}, annotations={})

Current frame:
Traceback(filename="/Users/jstrick/curr/courses/python/examples3/inspect_ex.py',
lineno=26, function='<module>", code_context=['print("Current frame:",
inspect.getframeinfo(inspect.currentframe())) # <7>\n'], index=0)

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

122

Table 2. inspect module convenience functions
Function(s)

ismodule(), isclass(), ismethod(), isfunction(),
isgeneratorfunction(), isgenerator(), istraceback(),
isframe(), iscode(), isbuiltin(), isroutine()

getmembers()

getfile(), getsourcefile(), getsource()
getdoc(), getcomments()
getmodule()

getclasstree()

getargspec(), getargvalues()
formatargspec(), formatargvalues()
getouterframes(), getinnerframes()
currentframe()

stack(), trace()

Chapter 4: Metaprogramming

Intermediate Python

Description

check object types

get members of an object that satisfy a given
condition

find an object’s source code

get documentation on an object

determine the module that an object came from
arrange classes so as to represent their hierarchy
get info about function arguments

format an argument spec

get info about frames

get the current stack frame

get info about frames on the stack or in a
traceback

© 2021 CJ Associates (rev1.0)

Intermediate Python 123
Working with attributes

* Objects are dictionaries of attributes

Special functions can be used to access attributes

Attributes specified as strings

* Syntax

getattr(object, attribute [,defaultvalue])
hasattr(object, attribute)

setattr(object, attribute, value)
delattr(object, attribute)

All Python objects are essentially dictionaries of attributes. There are four special builtin functions for
managing attributes. These may be used to programmatically access attributes when you have the
name as a string.

getattr() returns the value of a specified attribute, or raises an error if the object does not have that
attribute. getattr(a, 'spam') is the same as a.spam. An optional third argument to getattr() provides a
default value for nonexistent attributes (and does not raise an error).

hasattr() returns the value of a specified attribute, or None if the object does not have that attribute.
setattr() an attribute to a specified value.

delattr() deletes an attribute and its corresponding value.

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

124 Intermediate Python

Example
attributes.py
#!/usr/bin/env python
class Spam():
def eggs(self, msg): @
print("eggs!", msg)
s = Spam()
s.eggs("fried")
print("hasattr()", hasattr(s, 'eggs')) @
e = getattr(s, 'eggs') @

e("scrambled")

def toast(self, msg):
print("toast!", msq)

setattr(Spam, 'eggs', toast) @
s.eggs("buttered!")
delattr(Spam, 'eggs') ®

try:
s.eggs("shirred")

except AttributeError as err: ®
print(err)

@ create attribute

@ check whether attribute exists
® retrieve attribute

@ set (or overwrite) attribute

® remove attribute

® missing attribute raises error

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 125

attributes.py

eggs! fried

hasattr() True

eggs! scrambled

toast! buttered!

'Spam' object has no attribute 'eggs'

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

126 Intermediate Python

Adding instance methods

* Use setattr()
* Add instance method to class

* Add instance method to instance

Using setattr(), it is easy to add instance methods to classes. Just add a function object to the class.
Because it is part of the class itself, it will automatically be bound to the instance. Remember that an
instance method expects self as the first parameter. In fact, this is the meaning of a bound instance — it
is "bound" to the instance, and therefore when called, it is passed the instance as the first parameter.

Once added, the method may be called from any existing or new instance of the class.

To add an instance method to an instance takes a little more effort. Because it’s not being added to the
class, it is not automatically bound. The function needs to know what instance it should be bound to.
This can be accomplished with the types.MethodType function.

Pass the function and the instance to MethodType().

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 127

Example

adding_instance_methods.py

#!/usr/bin/env python
from types import MethodType

class Dog(): @
pass

d1 = Dog() @

def bark(self): ®
print("Woof! woof!")

setattr(Dog, "bark", bark) @
d2 = Dog() ®

d1.bark() ®
d2.bark()

def wag(self): @
print("Wagging...")

setattr(d1, "wag", MethodType(wag, d1))

dl.wag() ©

try:
d2.wag()

except AttributeError as err:
print(err)

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

128 Intermediate Python

@ Define Dog type

@ Create instance of Dog

® Define (unbound) function

@ Add function to class (which binds it as an instance method)

® Define another instance of Dog

® New function can be called from either instance

@ Create another unbound function

Add function to instance after passing it through MethodType()
@ Call instance method

Instance method not available - only bound to d1

adding_instance_methods.py

Woof! woof!
Woof! woof!
Wagging...
'Dog" object has no attribute 'wag'

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 129
Callable classes

e Convenient for one-method classes

Really "callable instances"
* Implement __call__

e Convenient for one-method classes

Useful for decorators

Any class instance may be made callable by implementing the special method call. This means that
rather than saying:

sc = SomeClass()
sc.some_method()

you can say

sc = SomeClass()

sc()

What’s the advantage? Really, not too much. It just saves having to call a method from the instance,
letting you call the instance itself. The use case is for classes that only have one method.

You can think of a callable class as a function that can also keep some state. As with many object-
oriented features, its main purpose is to simplify the user interface.

One good use of callable classes is for implementing decorators as classes, rather than functions.

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

130 Intermediate Python

Example

callable_class.py
#!/usr/bin/env python

class TagWrapper():
def __init__(self, tag):
self._tag = tag

def wrap(self, text):
return '<{0}>{1}</{0}>".format(self._tag, text)

class HTMLWrapper():

def __init__(self, tag):
self._tag = tag

def __call_ (self, text): @

return "<{0}>{1}</{0}>".format(self._tag, text)
if __name__ == "'__main__":
non-callable class
t = TagWrapper('h1")
print(t.wrap('foo"))
print(t.wrap('bar"))
print()

callable class

h1 = HTMLWrapper('h1') @
print(h1('spam')) ®

div = HTMLWrapper('div")
print(div('ham'))
print(div('toast'))
print(div('jam'))

@ Define function to be called when instance is called
@ Create instance of "callable class"

® Instance is callable — essentially h1._ call_ ('spam’)

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 131

callable_class.py

<h1>foo</h1>
<h1>bar</h1>

<h1>spam</h1>
<div>ham</div>
<div>toast</div>
<div>jam</div>

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

132 Intermediate Python

Decorators

Classic design pattern

Built into Python
» Implemented via functions or classes

* Can decorate functions or classes

Can take parameters (but not required to)

 functools.wraps() preserves function’s properties

In Python, many decorators are provided by the standard library, such as property() or classmethod()

A decorator is a component that modifies some other component. The purpose is typically to add
functionality, but there are no real restrictions on what a decorator can do. Many decorators register a
component with some other component. For instance, the @app.route() decorator in Flask maps a URL
to a view function.

As another example, unittest provides decorators to skip tests. A very common decorator is
@property, which converts a class method into a property object.

A decorator can be any callable, which means it can be a normal function, a class method, or a class
which implements the __call__() method (AKA callable class, as discussed earlier).

A simple decorator expects the item being decorated as its parameter, and returns a replacement.
Typically, the replacement is a new function, but there is no restriction on what is returned. If the
decorator itself needs parameters, then the decorator returns a wrapper function that expects the item
being decorated, and then returns the replacement.

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python

133

Table 3. Decorators in the standard library

Decorator
@abc.abstractmethod

@abc.abstractproperty

@asyncio.coroutine
@atexit.register
@classmethod

@contextlib.contextmanager

@functools.lru_cache
@functools.singledispatch
@functools.total_ordering

@functools.wraps

@property
@staticmethod
@types.coroutine

@unittest.mock.patch

@unittest.mock.patch.dict

@unittest.mock.patch.multiple

@unittest.mock.patch.object
@unittest.skip()
@unittest.skipIf()
@unittest.skipUnless()
@unittest.expectedFailure()

@unittest.removeHandler()

© 2021 CJ Associates (rev1.0)

Description
Indicate abstract method (must be implemented).

Indicate abstract property (must be implemented).
DEPRECATED

Mark generator-based coroutine.
Register function to be executed when interpreter (script) exits.
Indicate class method (receives class object, not instance object)

Define factory function for with statement context managers (no
need to create __enter_ () and __exit () methods)

Wrap a function with a memoizing callable
Transform function into a single-dispatch generic function.
Supply all other comparison methods if class defines at least one.

Invoke update_wrapper() so decorator’s replacement function
keeps original function’s name and other properties.

Indicate a class property.
Indicate static method (passed neither instance nor class object).
Transform generator function into a coroutine function.

Patch target with a new object. When the function/with statement
exits patch is undone.

Patch dictionary (or dictionary-like object), then restore to
original state after test.

Perform multiple patches in one call.
Patch object attribute with mock object.
Skip test unconditionally

Skip test if condition is true

Skip test unless condition is true

Mark Test as expected failure

Remove Control-C handler

Chapter 4: Metaprogramming

134 Intermediate Python
Applying decorators

* Use @ symbol
* Applied to next item only

* Multiple decorators OK

The @ sign is used to apply a decorator to a function or class. A decorator only applies to the next
definition in the script.

The most important thing to know about the decorators is the following syntax:

@spam
def ham():
pass

is exactly the same as
ham = spam(ham)
and

@spam(a, b, c)
def ham():
pass

is exactly the same as
ham = spam(a, b, c)(ham)

Once you understand this, then creating decorators is just a matter of writing functions or classes and
having them return the appropriate thing.

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 135

Table 4. Implementing Decorators

Implemented as Decorates Takes How to do it

parameters
function function N decorator function returns replacement function
function function Y decorator function accept params and returns

function that returns replacement function
function class N decorator function returns replacement class

function class Y decorator function accepts params and returns
function that returns replacement class

class function N instance.__call__() is replacement function

class function Y instance.__call__() accepts params and returns
replacement function

class class N instance.__call__() accepts original class, returns
replacement class (which is usually same as
orginal class)

class class Y instance.__call__() accepts params and returns
function that returns replacement class

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

136 Intermediate Python
Trivial Decorator

* Decorator can return anything

* Not very useful, usually

A decorator does not have to be elaborate. It can return anything, though typically decorators return
the same type of object they are decorating.

In this example, the decorator returns the integer value 42. This is not particularly useful, but
illustrates that the decorator always replaces the object being decorated with something.

Example

deco_trivial.py
#!/usr/bin/env python

def void(thing_being_decorated):
return 42 @

name = "Guido"
X = void(name)

evoid @
def hello():
print("Hello, world")

@void
def howdy():
print("Howdy, world")

print(hello, type(hello)) ®
print(howdy, type(howdy)) ®
print(x, type(x))

@ replace function with 42

@ decorate hello() function

@ hello is now the integer 42, not a function

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 137

deco_trivial.py
4) <class "int'>

4) <class "int'>
47 <class "int'>

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

138 Intermediate Python
Decorator functions

* Provide a wrapper around a function
* Purposes

o Add functionality

o Register

> ??? (open-ended)

» Optional parameters

A decorator function acts as a wrapper around some object (usually function or class). It allows you to
add features to a function without changing the function itself. For instance, the @property,
@classmethod, and @staticnethod decorators are used in classes.

A simple decorator function expects only one argument — the function to be modified. It should return
a new function, which will replace the original. The replacement function typically calls the original
function as well as some new code. More complex decorators expect parameters to the decorator itself.
In this case the decorator returns a function that expects the original function, and returns the
replacement function.

The new function should be defined with generic arguments (*args, **kwargs) so it can handle any
combination of arguments for the original function.

The wraps decorator from the functools module in the standard library should be used with the
function that returns the replacement function. This makes sure the replacement function keeps the
same properties (especially the name) as the original (target) function. Otherwise, the replacement
function keeps all of its own attributes.

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 139
Example
deco_debug.py

#!/usr/bin/env python

from functools import wraps

def debugger(old_func): @

@wraps(old_func) @
def new_func(*args, **kwargs): @
print("*" * 40) @
print("** function", old_func.__name__, "**") @

if args: @
print("\targs are ", args)
if kwargs: @
print("\tkwargs are ", kwargs)

print("*" * 40) @
return old_func(*args, **kwargs) ®
return new_func ®
@debugger @

def hello(greeting, whom="world'):
print("{}, {}".format(greeting, whom))

hello('hello', 'world')
print()

hello('hi', 'Earth')
print()

hello('greetings")

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

140 Intermediate Python

@ decorator function — expects decorated (original) function as a parameter
@ @wraps preserves name of original function after decoration

® replacement function; takes generic parameters

@ new functionality added by decorator

® call the original function

® return the new function object

@ apply the decorator to a function

call new function
deco_debug.py

hkkkhkhhkhhhrhrrhhhhhhhrhrhrhkhhhkhhhrrkrrikrx

** function hello **

args are ('hello', 'world')
kkhkhkkkkdhhkhkhdhdhhhhdhhhhhdhdhdhhhdkdhhihkdkdiik

hello, world

kkkkkkhkhkkhhkhkhkhkkhkhkhkhkhkhhkhkhkkkhkkhkhkkhkhkkkrkkkx

** function hello **
args are ('hi', "Earth')

R R

hi, Earth

hkkhkhkhhkhhhkrhrhrhhhhhhhhrhrhrhhhhhhrhkrkrkrx

** function hello **

args are ('greetings',)
*kkkkhkhhhkkkkkhkhdhhhkkhhdhhhkkhhddhdhikkhiidikkx

greetings, world

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 141
Decorator Classes

» Same purpose as decorator functions
» Two ways to implement

- No parameters

o Expects parameters

 Decorator can keep state

A class can also be used to implement a decorator. The advantage of using a class for a decorator is that
a class can keep state, so that the replacement function can update information stored at the class
level.

Implementation depends on whether the decorator needs parameters.

If the decorator does not need parameters, the class must implement two methods: __init_ () is passed
the original function, and can perform any setup needed. The __call__ method replaces the original
function. In other word, after the function is decorated, calling the function is the same as calling
CLASS. call_.

If the decorator does need parameters, __init_ () is passed the parameters, and __call__() is passed the
original function, and must return the replacement function.

A good use for a decorator class is to log how many times a function has been called, or even keep
track of the arguments it is called with (see example for this).

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

142 Intermediate Python

Example

deco_debug_class.py

#!/usr/bin/env python

class debugger(): @
function_calls = []

def __init__(self, func): @
self. func = func

def __call__(self, *args, **kwargs): @

print("*" * 40) @

print("function {}()".format(self._func.__name__)) @
print("\targs are ", args) @

print("\tkwargs are ", kwargs) @

#

print("*" * 40) @

self.function_calls.append(®
(self._func.__name__, args, kwargs)

)

result = self._func(*args, **kwargs) ®
return result @

@classmethod
def get_calls(cls):
return cls.function_calls

@debugger ©
def hello(greeting, whom="world"):
print("{}, {}".format(greeting, whom))

@debugger ©
def bark(bark_word, *, repeat=2):
print("{0}! ".format(bark_word) * repeat)

hello('hello', 'world')
print()

hello('hi', 'Earth')
print()

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 143
hello('greetings")

bark("woof", repeat=3)
bark("yip", repeat=4)
bark("arf")

hello('hey', 'girl")
print('-" * 60)

for i, info in enumerate(debugger.get_calls(), 1): @
print("{:2d}. {:10s} {!s:20s} {!s:20s}".format(i, info[@], info[1], info[2]))

@ class implementing decorator

@ original function passed into decorator’s constructor
® call() is replacement function

@ add useful features to original function

® add function name and arguments to saved list

® call the original function

@ return result of calling original function

define method to get saved function call information
© apply debugger to function

call replacement function

@ display function call info from class

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

144 Intermediate Python
deco_debug class.py

hello, world

hi, Earth

greetings, world
woof! woof! woof!

yip! yip! yip! yip!

arf! arf!

hey, girl

1. hello ('"hello', 'world') {}

2. hello ('hi", 'Earth') {}

3. hello ('greetings',) {}

4. bark ('woof",) {'repeat': 3}
5. bark ("yip',) {'repeat': 4}
6. bark ('arf',) {}

7. hello ("hey', 'girl") {3}

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 145
Decorator parameters

» Decorator functions require two nested functions

* Method __call__() returns replacement function in classes

A decorator can be passed parameters. This requires a little extra work.

For decorators implemented as functions, the decorator itself is passed the parameters; it contains a
nested function that is passed the decorated function (the target), and it returns the replacement
function.

For decorators implemented as classes, init is passed the parameters, _ call__() is passed the decorated
function (the target), and __call__returns the replacement function.

There are many combinations of decorators (8 total, to be exact). This is because decorators can be
implemented as either functions or classes, they may take parameters, or not, and they can decorate
either functions or classes. For an example of all 8 approaches, see the file decorama.py in the
EXAMPLES folder.

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

146 Intermediate Python
Example
deco_params.py

#!/usr/bin/env python
#

from functools import wraps @

def multiply(multiplier): @
def deco(old_func): ®

@wraps(old_func) @

def new_func(*args, **kwargs): ®
result = old_func(*args, **kwargs) ®
return result * multiplier @

return new_func

return deco ©

@multiply(4)
def spam():
return 5

@multiply(10)
def ham():
return 8

a = spam()
b = ham()
print(a, b)

@ wrapper to preserve properties of original function

@ actual decorator —receives decorator parameters

® "inner decorator" —receives function being decorated
@ retain name, etc. of original function

® replacement function — this is called instead of original

® call original function and get return value

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 147

@ multiple result of original function by multiplier
deco() returns new_function

© multiply returns deco

deco_params.py

20 80

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

148 Intermediate Python

Creating classes at runtime

» Use the type() function

* Provide dictionary of attributes
A class can be created programmatically, without the use of the class statement. The syntax is

type("name", (base_class, '+*), {attributes})

The first argument is the name of the class, the second is a tuple of base classes (use object if you are
not inheriting from a specific class), and the third is a dictionary of the class’s attributes.

NOTE Instead of type, any other metaclass can be used.

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 149

Example

creating_classes.py
#!/usr/bin/env python

def function_1(self): @
print("Hello from f1()")

def function 2(self): @
print("Hello from f2()")

NewClass = type("NewClass", (), { @
"hellol': function_1,
"hello2': function_ 2,
'color': 'red’,
'state': 'Ohio’',

1))

n1 = NewClass() ®

n1.hello1() @
n1.hello2()
print(n1.color) ®
print()

SubClass = type("SubClass", (NewClass,), {'fruit': 'banana'}) ®
s1 = SubClass() @

s1.hello1()

print(sl.color) ©

print(s1.fruit)

@ create method (not inside a class — could be a lambda)

@ create class using type() — parameters are class name, base classes, dictionary of attributes
® create instance of new class

@ call instance method

® access class data

® create subclass of first class

@ create instance of subclass

call method on subclass

@ access class data

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

150 Intermediate Python
creating_classes.py

Hello from f1()
Hello from f2()
red

Hello from f1()

red
banana

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 151
Monkey Patching

* Modify existing class or object
» Useful for enabling/disabling behavior

* Can cause problems
"Monkey patching" refers to technique of changing the behavior of an object by adding, replacing, or
deleting attributes from outside the object’s class definition.
It can be used for:

* Replacing methods, attributes, or functions
* Modifying a third-party object for which you do not have access

* Adding behavior to objects in memory
If you are not careful when creating monkey patches, some hard-to-debug problems can arise

» If the object being patched changes after a software upgrade, the monkey patch can fail in
unexpected ways.

* Conflicts may occur if two different modules monkey-patch the same object.

» Users of a monkey-patched object may not realize which behavior is original and which comes
from the monkey patch.

Monkey patching defeats object encapsulation, and so should be used sparingly.

Decorators are a convenient way to monkey-patch a class. The decorator can just add a method to the
decorated class.

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

152 Intermediate Python

Example

meta_monkey.py
#!/usr/bin/env python
class Spam(): @

def __init__(self, name):
self. _name = name

def eggs(self): @
print("Good morning, {}. Here are your delicious fried eggs.".format(self._name,

))

s = Spam('Mrs. Higgenbotham') ®
s.eqgs() @

def scrambled(self): ®
print("Hello, {}. Enjoy your scrambled eggs".format(self._name,))

setattr(Spam, "eggs", scrambled) ®
s.eggs() @

@ create normal class

@ add normal method

® create instance of class

@ call method

® define new method outside of class

® monkey patch the class with the new method

@ call the monkey-patched method from the instance

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 153

meta_monkey.py

Good morning, Mrs. Higgenbotham. Here are your delicious fried eggs.
Hello, Mrs. Higgenbotham. Enjoy your scrambled eggs

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

154 Intermediate Python
Do you need a Metaclass?

* Deep magic
* Used in frameworks such as Django

* YAGNI (You Ain’t Gonna Need It)

Before we cover the details of metaclasses, a disclaimer: you will probably never need to use a
metaclass. When you think you might need a metaclass, consider using inheritance or a class
decorator. However, metaclasses may be a more elegant approach to certain kinds of tasks, such as
registering classes when they are defined.

There are two use cases where metaclasses are always an appropriate solution, because they must be
done before the class is created:

* Modifying the class name

* Modifying the the list of base classes.

Several popular frameworks use metaclasses, Django in particular. In Django they are used for models,
forms, form fields, form widgets, and admin media.

Remember that metaclasses can be a more elegant way to accomplish things that can also be done with
inheritance, composition, decorators, and other techniques that are less "magic".

Chapter 4: Metaprogrammin © 2021 CJ Associates (rev1.0)
P prog g

Intermediate Python 155
About metaclasses
* Metaclass:Class::Class:Object

Just as a class is used to create an instance, a metaclass is used to create a class.

The primary reason for a metaclass is to provide extra functionality at class creation time, not instance
creation time. Just as a class can share state and actions across many instances, a metaclass can share
(or provide) data and state across many classes.

The metaclass might modify the list of base classes, or register the class for later retrieval.
The builtin metaclass that Python provides is type.

As we saw earlier ,you can create a class from a metaclass by passing in the new class’s name, a tuple
of base classes (which can be empty), and a dictionary of class attributes (which also can be empty).

class Spam(Ham):
id = 1

is exactly equivalent to
Spam = type('Spam', (Ham,), {"id": 1})

Replacing "type" with the name of any other metaclass works the same.

Data shared Data shared

- Data unique
by all classes by all instances

to instance

METACLASS CLASS INSTAMCE

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

156 Intermediate Python
Mechanics of a metaclass

e Like normal class
» Should implement _ new__

* Can implement

o _init
o _ prepare__
o call

To create a metaclass, define a normal class. Most metaclasses implement the _ new__ method. This
method is called with the type, name, base classes, and attribute dictionary (if any) of the new class. It
should return a new class, typically using super()._new__(), which is very similar to how normal
classes create instances. This is one place you can modify the class being created. You can add or
change attributes, methods, or properties.

For instance, the Django framework uses metaclasses for Models. When you create an instance of a
Model, the metaclass code automatically creates methods for the fields in the model. This is called
"declarative programming", and is also used in SqlAlchemy’s declarative model, in a way pretty similar
to Django.

When you execute the following code:

class SomeClass(metaclass=SomeMeta):
pass

META(name, bases, attrs) is executed, where META is the metaclass (normally type()). Then,

1. The _prepare__ method of the metaclass is called
2. The _new__ method of the metaclass is called

3. The _init method of the metaclass is called.

Next, after the following code runs:

obj = SomeClass()

SomeMeta.call() is called. It returns whatever SomeMeta._ new__() returned.

__prepare_ () _new_ () _init_ () __call_0

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 157

Example

metaclass_generic.py

#!/usr/bin/env python

class Meta(type):

def

dict)

def

classes

attrs))

def

__prepare__(class_name, bases):

"Prepare"” the new class. Here you can update the base classes.

:param name: Name of new class as a string
:param bases: Tuple of base classes
:return: Dictionary that initializes the namespace for the new class (must be a

print("in metaclass (class={}) __prepare__()".format(class_name), end=' ==> ")
print("params: name={}, bases={}".format(class_name, bases))
return {'animal': 'wombat', 'id': 100}

__new__(metatype, name, bases, attrs):

Create the new class. Called after __prepare__(). Note this is only called when

:param metatype: The metaclass itself

:param name: The name of the class being created

:param bases: bases of class being created (may be empty)

:param attrs: Initial attributes of the class being created

ireturn:

print("in metaclass (class={}) __new__()".format(name), end="' ==> ")
print("params: type={} name={} bases={} attrs={}".format(metatype, name, bases,

return super().__new__(metatype, name, bases, attrs)

__init__(cls, *args):

:param cls: The class being created (compare with 'self' in normal class)
:param args: Any arguments to the class

print("in metaclass (class={}) __init__()".format(cls.__name__), end=' ==> ")

print("params: cls={}, args={}".format(cls, args))

super().__init__(cls)

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

158 Intermediate Python

def __call__(self, *args, **kwargs):

Function called when the metaclass is called, as in NewClass = Meta(...)

:param args:
:param args:
:param kwargs:
rreturn:

print("in metaclass (class={})__call__()".format(self.__name__))
class MyBase():
pass
print('=" * 60)

class A(MyBase, metaclass=Meta):
id = 5

def __init__ (self):
print("In class A __init__()")

print('=" * 60)

class B(MyBase, metaclass=Meta):
animal = 'wombat'

def __init__(self):
print("In class B __init__()")

print('-" * 60)

ml = A()
print('-" * 60)
m2 = B()
print('-" * 60)
m3 = A()
print('-" * 60)
md = B()

print('-" * 60)
print("animal: {} id: {}".format(A.animal, B.id))

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 159

metaclass_generic.py

in metaclass (class=A) __prepare__() ==> params: name=A, bases=(<class
'__main__.MyBase'>,)

in metaclass (class=A) __new__() ==> params: type=<class '__main__.Meta'> name=A
bases=(<class '__main__.MyBase'>,) attrs={'animal': 'wombat', 'id': 5, '__module__
'__main__', '__qualname__': 'A', '__init__": <function A.__init__ at 0x7f972802c710>}
in metaclass (class=A) __init__() ==> params: cls=<class '__main__.A"'>, args=('A",
(<class '__main__.MyBase'>,), {'animal': 'wombat', 'id': 5, '__module__': '__main__",
'__qualname__": 'A', "__init__': <function A.__init__ at 0x7f972802c710>})

in metaclass (class=B) __prepare__() ==> params: name=B, bases=(<class
'__main__.MyBase'>,)

in metaclass (class=B) __new__() ==> params: type=<class '__main__.Meta'> name=B
bases=(<class '__main__.MyBase'>,) attrs={'animal': 'wombat', 'id': 100, '__module__
'__main__"', '__qualname__': 'B', '__init__': <function B.__init__ at 0x7f972802ca70>}
in metaclass (class=B) __init__() ==> params: cls=<class '__main__.B'>, args=('B’,
(<class '__main__.MyBase'>,), {'animal': 'wombat', 'id': 100, '__module__
'__qualname__": 'B', '__init__': <function B.__init__ at 0x7f972802ca70>})

__main__",

animal: wombat id: 100

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

160 Intermediate Python
Singleton with a metaclass

* Classic example
» Simple to implement

» Works with inheritance

One of the classic use cases for a metaclass in Python is to create a singleton class. A singleton is a class
that only has one actual instance, no matter how many times it is instantiated. Singletons are used for
loggers, config data, and database connections, for instance.

To create a single, implement a metaclass by defining a class that inherits from type. The class should
have a class-level dictionary to store each class’s instance. When a new instance of a class is created,
check to see if that class already has an instance. If it does not, call _ call__ to create the new instance,
and add the instance to the dictionary.

In either case, then return the instance where the key is the class object.

Chapter 4: Metaprogrammin © 2021 CJ Associates (rev1.0)
P prog g

Intermediate Python 161

Example

metaclass_singleton.py
#!/usr/bin/env python

class Singleton(type): @
_instances = {} @

def __new__(typ, *junk):
print("__new__()")
return super().__new__(typ, *junk)

def __call__(cls, *args, **kwargs): ®
print("__call__()")
if cls not in cls. _instances:)
cls._instances[cls] = super().__call__(*args, **kwargs) ®

return cls._instances[cls] ®

class ThingA(metaclass=Singleton): @
def __init__(self, value):
self.value = value

class ThingB(metaclass=Singleton): @
def __init__(self, value):
self.value = value

tal = ThingA(1)
ta2 = ThingA(2)
ta3 = ThingA(3)
tb1 = ThingB(4)
tb2 = ThingB(5)
tb3 = ThingB(6)

for thing in tal, ta2, ta3, tb1, tb2, tb3:
print(type(thing).__name__, id(thing), thing.value) ©

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

162 Intermediate Python

@ use type as base class of a metaclas

@ dictionary to keep track of instances

® call is passed the new class plus its parameters

@ check to see if the new class has already been instantiated
® if not, create the (single) class instance and add to dictionary
® return the (single) class instance

@ Define two different classes which use Singleton

Create instances of ThingA and ThingB

© Print the type, name, and ID of each thing — only one instance is ever created for each class

metaclass_singleton.py

ThingA 140241554520464 1
ThingA 140241554520464 1
ThingA 140241554520464 1
ThingB 140241554520528 4
ThingB 140241554520528 4
ThingB 140241554520528 4

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 163

Chapter 4 Exercises

Exercise 4-1 (pres_attr.py)

Instantiate the President class. Get the first name, last name, and party attributes using getattr().

Exercise 4-2 (pres_monkey.py, pres_monkey_amb.py)

Monkey-patch the President class to add a method get_full name which returns a single string
consisting of the first name and the last name, separated by a space.

TIP Instead of a method, make full name a property.

Exercise 4-3 (sillystring.py)

Without using the class statement, create a class named SillyString, which is initialized with any string.
Include an instance method called every_other which returns every other character of the string.

Instantiate your string and print the result of calling the every_other() method. Your test code should

look like this:

ss = SillyString('this is a test')
print(ss.every_other())

It should output

ti sats

Exercise 4-4 (doubledeco.py)

Write a decorator to double the return value of any function. If a function returns 5, after decoration it
should return 10. If it returns "spam", after decoration it should return "spamspam", etc.

Exercise 4-5 (word_actions.py)

Write a decorator, implemented as a class, to register functions that will process a list of words. The
decorated functions will take one parameter — a string — and return the modified string.

The decorator itself takes two parameters — minimum length and maximum length. The class will
store the min/max lengths as the key, and the functions as values, as class data.

The class will also provide a method named process_words, which will open DATA/words.txt and
read it line by line. Each line contains a word.

© 2021 CJ Associates (rev1.0) Chapter 4: Metaprogramming

164 Intermediate Python

For every registered function, if the length of the current word is within the min/max lengths, call all
the functions whose key is that min/max pair.

In other words, if the registry key is (5, 8), and the value is [funcl, func2], when the current word is
within range, call funcl(w) and func2(w), where w is the current word.

Example of class usage:

word_select = WordSelect() # create callable instance

@word_select(16, 18) # register function for length 16-18, inclusive
def make_upper(s):
return s.upper()

word_select.process_words() # loop over words, call functions if selected

Suggested functions to decorate:

* make the word upper-case
* put stars before or around the word

e reverse the word

Remember all the decorated functions take one argument, which is one of the strings in the word list,
and return the modified word.

Chapter 4: Metaprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 165

Chapter 5: Developer Tools

Objectives

* Run pylint to check source code
* Debug scripts
* Find speed bottlenecks in code

* Compare algorithms to see which is faster

© 2021 CJ Associates (rev1.0) Chapter 5: Developer Tools

166 Intermediate Python
Program development

* More than just coding

o Design first

o

Consistent style

o Comments

o

Debugging

o

Testing

Documentation

o

Chapter 5: Developer Tools © 2021 CJ Associates (rev1.0)

Intermediate Python 167
Comments

» Keep comments up-to-date

» Use complete sentences

» Block comments describe a section of code
 Inline comments describe a line

* Don’t state the obvious
Comments that contradict the code are worse than no comments. Always make a priority of keeping
the comments up-to-date when the code changes!

Comments should be complete sentences. If a comment is a phrase or sentence, its first word should be
capitalized, unless it is an identifier that begins with a lower case letter (never alter the case of
identifiers!).

Block comments generally apply to some (or all) code that follows them, and are indented to the same
level as that code. Each line of a block comment starts with a # and a single space (unless it is indented
text inside the comment).

Paragraphs inside a block comment are separated by a line containing a single #.

Use inline comments sparingly. Inline comments should be separated by at least two spaces from the
statement; they should start with a # and a single space.

Inline comments are unnecessary and in fact distracting if they state the obvious. Don’t do this:
X =x + 1 # Increment x

Only use an inline comment if the reason for the statement is not obvious:
X=X+ 1 # Add one so range() does the right thing

The above was adapted from PEP 8

© 2021 CJ Associates (rev1.0) Chapter 5: Developer Tools

168 Intermediate Python
pylint

* Checks many aspects of code
 Finds mistakes
* Rates your code for standards compliance

» Don’t worry if your code has a lower rating!

Can be highly customized

pylint is a Python source code analyzer which looks for programming errors, helps enforcing a coding
standard and sniffs for some code smells (as defined in Martin Fowler’s Refactoring book)

from the pylint documentation

pylint can be very helpful in identifying errors and pointing out where your code does not follow
standard coding conventions. It was developed by Python coders at Logilab http://www.logilab.fr.

It has very verbose output, which can be modified via command line options.
pylint can be customized to reflect local coding conventions.

pylint usage:

pylint filename(s) or directory
pylint -ry filename(s) or directory

The -ry option says to generate a full detailed report.

Most Python IDEs have pylint, or the equivalent, built in.

Other tools for analyzing Python code: * pyflakes * pychecker

Chapter 5: Developer Tools © 2021 CJ Associates (rev1.0)

http://www.logilab.fr

Intermediate Python 169

Customizing pylint

Use pylint --generate-rcfile

Redirect to file

Edit as needed

» Knowledge of regular expressions useful

Name file \~/.pylintrc on Linux/Unix/OS X

Use —rcfile file to specify custom file on Windows
To customize pylint, run pylint with only the -generate-rcfile option. This will output a well-commented
configuration file to STDOUT, so redirect it to a file.

Edit the file as needed. The comments describe what each part does. You can change the allowed
names of variables, functions, classes, and pretty much everything else. You can even change the rating
algorithm.

Windows

Put the file in a convenient location (name it something like pylintrc). Invoke pylint with the -rcfile
option to specify the location of the file.

pylint will also find a file named pylintrc in the current directory, without needing the -rcfile option.

Non-Windows systems

On Unix-like systems (Unix, Mac OS, Linux, etc.), /etc/pylintrc and ~/.pylintrc will be automatically
loaded, in that order.

See docs.pylint.org for more details.

© 2021 CJ Associates (rev1.0) Chapter 5: Developer Tools

170 Intermediate Python

Using pyreverse

» Source analyzer

» Reverse engineers Python code

Part of pylint

* Generates UML diagrams
pyreverse is a Python source code analyzer. It reads a script, and the modules it depends on, and
generates UML diagrams. It is installed as part of the pylint package.
There are many options to control what it analyzes and what kind of output it produces.

Use -A' to search all ancestors, ‘-p to specify the project name, -o to specify output type (e.g., pdf,
png, jpg).

pyreverse requires Graphviz, a graphics tool that must be installed separately from

NOTE
Python

Chapter 5: Developer Tools © 2021 CJ Associates (rev1.0)

Example

pyreverse -o png -p MyProject -A animal.py mammal.py insect.py

packages_MyProject.png

animal

[\

mnsect mammal

172

classes_MyProject.png

Animal

name
species

kall()

removel)

make_ sound()

700 _s1ze()

/

\

Intermediate Python

Insect

Mammal

can_fly

oestation

NOTE pyreverse requires the (non-Python) Graphviz utility to be installed.

Chapter 5: Developer Tools

© 2021 CJ Associates (rev1.0)

Intermediate Python 173
The Python debugger

* Implemented via pdb module
» Supports breakpoints and single stepping

» Based on gdb
While most IDEs have an integrated debugger, it is good to know how to debug from the command
line. The pdb module provides debugging facilities for Python.

The usual way to use pdb is from the command line:
python -mpdb script_to_be_debugged.py

Once the program starts, it will pause at the first executable line of code and provide a prompt, similar
to the interactive Python prompt. There is a large set of debugging commands you can enter at the
prompt to step through your program, set breakpoints, and display the values of variables.

Since you are in the Python interpreter as well, you can enter any valid Python expression.

You can also start debugging mode from within a program.

© 2021 CJ Associates (rev1.0) Chapter 5: Developer Tools

Starting debug mode

* Syntax
python -m pdb script
or

import pdb
pdb.run('function')

pdb is usually invoked as a script to debug other scripts. For example:

python -m pdb myscript.py

Typical usage to run a program under control of the debugger is:

>>> import pdb

>>> import some_module

>>> pdb.run('some_module.function_to_text()")
> <string>(0)7()

(Pdb) ¢ # (c)ontinue

> <string>(1)7()

(Pdb) ¢ # (c)ontinue

NameError: 'spam'

> <string>(1)7()

(Pdb)

To get help, type h at the debugger prompt.

Chapter 5: Developer Tools

Intermediate Python

© 2021 CJ Associates (rev1.0)

Intermediate Python 175
Stepping through a program

* s single-step, stepping into functions
* n single-step, stepping over functions
* r return from function

* crun to next breakpoint or end
The debugger provides several commands for stepping through a program. Use s to step through one
line at a time, stepping into functions.

Use n to step over functions; use r to return from a function; use ¢ to continue to next breakpoint or
end of program.

Pressing Enter repeats most commands; if the previous command was list, the debugger lists the next
set of lines.

© 2021 CJ Associates (rev1.0) Chapter 5: Developer Tools

176 Intermediate Python
Setting breakpoints
* Syntax

b list all breakpoints

b linenumber (, condition)

b file:linenumber (, condition)
b function name (, condition)

Breakpoints can be set with the b command. Specify a line number, or a function name, optionally
preceded by the filename that contains it.

Any of the above can be followed by an expression (use comma to separate) to create a conditional
breakpoint.

The threak command creates a one-time breakpoint that is deleted after it is hit the first time.

Chapter 5: Developer Tools © 2021 CJ Associates (rev1.0)

Intermediate Python 177
Profiling

* Use the profile module from the command line
» Shows where program spends the most time

* Output can be tweaked via options

Profiling is the technique of discovering the part of your code where your application spends the most
time. It can help you find bottlenecks in your code that might be candidates for revision or refactoring.

To use the profiler, execute the following at the command line:

python -m profile scriptname.py

This will output a simple report to STDOUT. You can also specify an output file with the -o option, and
the sort order with the -s option. See the docs for more information.

The pycallgraph2 module (third-party module) will create a graphical representation of

TIP an application’s profile, indicating visually where the application is spending the most
time.

© 2021 CJ Associates (rev1.0) Chapter 5: Developer Tools

178 Intermediate Python

Example

python -m profile count_with_dict.py
...script output...
19 function calls in 0.000 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
14 0.000 0.000 0.000 0.000 :0(get)

1 0.000 0.000 0.000 0.000 :0(items)

1 0.000 0.000 0.000 0.000 :0(open)

1 0.000 0.000 0.000 0.000 :0(setprofile)

1 0.000 0.000 0.000 0.000 count_with_dict.py:3(<module>)

1 0.000 0.000 0.000 0.000 profile:@(<code object <module> at

0xb74c36e0, file "count_with_dict.py", line 3>)
0 0.000 0.000 profile:@(profiler)

Chapter 5: Developer Tools © 2021 CJ Associates (rev1.0)

Intermediate Python 179
Benchmarking

e Use the timeit module

» Create a timer object with specified # of repetitions

Use the timeit module to benchmark two or more code snippets. To time code, create a Timer object,
which takes two strings of code. The first is the code to test; the second is setup code, that is only run
once per timer .

Call the timeit() method with the number of times to call the test code, or call the repeat() method
which repeats timeit() a specified number of times.

You can also use the timeit module from the command line. Use the -s option to specify startup code:

python -m timeit -s Ostartup code:::0 Ocode::.0

© 2021 CJ Associates (rev1.0) Chapter 5: Developer Tools

180 Intermediate Python

Example

bm_range_vs_while.py

#!/usr/bin/env python

from timeit import Timer

setup_code = """

values = []

nmmnn @

test _code one = '"'

for i in range(10000):
values.append(i)

values.clear()

)

test_code_two = '"'

i=0

while i < 10000:
values.append(i)

i+=1
values.clear()
Tr ®
t1 = Timer(test_code_one, setup_code) @
t2 = Timer(test_code_two, setup_code) ®

print("test one:")
print(t1.timeit(1000)) @
print()

print("test two:")
print(t2.timeit(1000)) @
print()
@ setup code is only executed once
@ code fragment executed many times
® Timer object creates time-able code

@ timeit() runs code fragment N times

Chapter 5: Developer Tools © 2021 CJ Associates (rev1.0)

Intermediate Python 181

bm_range_vs_while.py

test one:
0.581884131

test two:
0.8679698449999999

© 2021 CJ Associates (rev1.0) Chapter 5: Developer Tools

182 Intermediate Python

Chapter 5 Exercises

Exercise 5-1

Pick several of your scripts (from class, or from real life) and run pylint on them.

Exercise 5-2

Use the builtin debugger or one included with your IDE to step through any of the scripts you have
written so far.

Chapter 5: Developer Tools © 2021 CJ Associates (rev1.0)

Intermediate Python 183

Chapter 6: Unit Testing with pytest

Objectives

* Understand the purpose of unit tests

* Design and implement unit tests with pytest
* Run tests in different ways

* Use builtin fixtures

* Create and use custom fixtures

* Mark tests for running in groups

e Learn how to mock data for tests

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

184 Intermediate Python
What is a unit test?

* Tests unit of code in isolation
* Ensures repeatable results

» Asserts expected behavior
A unit test is a test which asserts that an isolated piece of code (one function, method, class, or module)
has some expected behavior. It is a way of making sure that code provides repeatable results.
There are four main components of a unit testing system:

1. Unit tests — individual assertions that an expected condition has been met
2. Test cases — collections of related unit tests
3. Fixtures —provide data to set up tests in order to get repeatable results

4, Test runners — utilities to execute the tests in one or more test cases

Unit tests should each test one aspect of your code, and each test should be independent of all other
tests, including the order in which tests are run.

Each test asserts that some condition is true.

Unit tests may collected into a test case, which is a related group of unit tests. With pytest, a test case
can be either a module or a class.

Fixtures provide repeatable, known input to a test.

The final component is a Test runner, which executes one, some, or all tests and reports on the results.
There are many different test runners for pytest. The builtin runner is very flexible.

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 185
The pytest module

* Provides
o test runner
o fixtures
o special assertions
o extra tools

+ Not based on xUnit’

The pytest module provides tools for creating, running, and managing unit tests.
Each test supplies one or more assertions. An assertion confirms that some condition is true.
Here’s how pytest implements the main components of unit testing:

unit test

A normal Python function that uses the assert statement to assert some condition is true

test case

A class or a module than contains unit tests (tests can be grouped with markers).

fixture

A special parameter of a unit test function that provides test resources (fixtures can be nested).

test runner

A text-based test runner is built in, and there are many third-party test runners

pytest is more flexible than classic xUnit implementations. For example, fixtures can be associated
with any number of individual tests, or with a test class. Test cases need not be classes.

! The builtin unit testing module, unittest, is based on xUnit patterns, as implemented in Java and
other languages.

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

186 Intermediate Python
Creating tests

e Create test functions

Use builtin assert
* Confirm something is true

» Optional message

To create a test, create a function whose name begins with "test". These should normally be in a
separate script, whose name begins with "test_" or ends with "_test". For the simplest cases, tests do not
even need to import pytest.

Each test function should use the builtin assert statement one or more times to confirm that the test
passes. If the assertion fails, the test fails.

pytest will print an appropriate message by introspecting the expression, or you can add your own
message after the expression, separated by a comma

It is a good idea to make test names verbose. This will help when running tests in verbose mode, so you
can see what tests are passing (or failing).

assert result == "spam'
assert 2 == 3, "Two is not equal to three!"

Example

pytests/test_simple.py
#!/usr/bin/env python

def test_two_plus_two_equals_four(): @
assert 2 + 2 == t @

@ tests should begin with "test" (or will not be found automatically)

@ if assert statement succeeds, the test passes

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 187
Running tests (basics)

* Needs a test runner

» pytest provides pytest script

To actually run tests, you need a test runner. A test runner is software that runs one or more tests and
reports the results.

pytest provides a script (also named pytest) to run tests.

You can run a single test, a test case, a module, or all tests in a folder and all its subfolders.
pytest test_:--py

to run the tests in a particular module, and

pytest -v test_:py

to add verbose output.

By default, pytest captures (and does not display) anything written to stdout/stderr. If you want to see
the output of print() statements in your tests, add the -s option, which turns off output capture.

pytest -s -

In older versions of pytest, the test runner script was named py.test. While newer

NOTE . .
versions support that name, the developers recommend only using pytest.

PyCharm automatically detects a script containing test cases. When you run the script the
first time, PyCharm will ask whether you want to run it normally or use its builtin test

TIP runner. Use Edit Configurations to modify how the script is run. Note: in PyCharm’s
settings, you can select the default test runner to be pytest, Unittest, or other test
runners.

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

188 Intermediate Python
Special assertions

» Special cases
o pytest.raises()

o pytest.approx()

There are two special cases not easily handled by assert.

pytest.raises

For testing whether an exception is raised, use pytest.raises(). This should be used with the with
statement:

with pytest.raises(ValueError):
w = Wombat('blah")

The assertion will succeed if the code inside the with block raises the specified error.

pytest.approx

For testing whether two floating point numbers are close enough to each other, use pytest.approx(:
assert result == pytest.approx(1.55)

The default tolerance is 1e-6 (one part in a million). You can specify the relative or absolute tolerance
to any degree. Infinity and NaN are special cases. NaN is normally not equal to anything, even itself,
but you can specify nanok=True as an argument to approx(.

See https://docs.pytest.org/en/latest/reference.html#pytest-approx for more information

NOTE
on pytest.approx()

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

https://docs.pytest.org/en/latest/reference.html#pytest-approx

Intermediate Python 189

Example

pytests/test_special_assertions.py

#!/usr/bin/env python
import pytest
import math

FILE_NAME = "IDONOTEXIST.txt'

def test_missing_filename():
with pytest.raises(FileNotFoundError): @
open(FILE_NAME) @

def test _list():
print()
assert (.1 + .2) == pytest.approx(.3) ®

def test_approximate_pi():
assert 22 / 7 == pytest.approx(math.pi, .001) @

@ assert FileNotFoundError is raised inside block
@ will fail test if file is not found
® fail unless values are within 0.000001 of each other (actual result is 0.30000000000000004)

@ Default tolerance is 0.000001; smaller (or larger) tolerance can be specified

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

190 Intermediate Python
Fixtures

» Provide resources for tests
* Implement as functions
* Scope

o Per test

- Per class

o Per module

Source of fixtures
o Builtin

o User-defined
When writing tests for a particular object, many tests might require an instance of the object. This
instance might be created with a particular set of arguments.

What happens if twenty different tests instantiate a particular object, and the object’s API changes?
Now you have to make changes in twenty different places.

To avoid duplicating code across many tests, pytest supports fixtures, which are functions that provide
information to tests. The same fixture can be used by many tests, which lets you keep the fixture
creation in a single place.

A fixture provides items needed by a test, such as data, functions, or class instances.

Fixtures can be either builtin or custom.

TIP Use py.test --fixtures to list all available builtin and user-defined fixtures.

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 191
User-defined fixtures

» Decorate with pytest.fixture
e Return value to be used in test

 Fixtures may be nested
To create a fixture, decorate a function with pytest.fixture. Whatever the function returns is the value
of the fixture.

To use the fixture, pass it to the test function as a parameter. The return value of the fixture will be
available as a local variable in the test.

Fixtures can take other fixtures as parameters as well, so they can be nested to any level.

It is convenient to put fixtures into a separate module so they can be shared across multiple test
scripts.

TIP Add docstrings to your fixtures and the docstrings will be displayed via pytest --fixtures

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

192 Intermediate Python

Example

pytests/test_simple_fixture.py

#!/usr/bin/env python
from collections import namedtuple
import pytest

Person = namedtuple('Person’, 'first_name last_name') @

FIRST _NAME = "Guido"
LAST_NAME = "Von Rossum"

@pytest.fixture @
def person():

Return a 'Person' named tuple with fields 'first_name' and 'last_name'

return Person(FIRST NAME, LAST NAME) &

def test_first_name(person): @
assert person.first_name == FIRST_NAME

def test_last_name(person): @
assert person.last_name == LAST_NAME

@ create object to test
@ mark person as a fixture
® return value of fixture

@ pass fixture as test parameter

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 193
Builtin fixtures

* Variety of common fixtures
» Provide

o Temp files and dirs

o Logging
o STDOUT/STDERR capture

- Monkeypatching tools

Pytest provides a large number of builtin fixtures for common testing requirements.

Using a builtin fixture is like using user-defined fixtures. Just specify the fixture name as a parameter
to the test. No imports are needed for this.

See https://docs.pytest.org/en/latest/reference.html#fixtures for details on builtin fixtures.

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

https://docs.pytest.org/en/latest/reference.html#fixtures

194 Intermediate Python

Example

pytests/test_builtin_fixtures.py
COUNTER_KEY = 'test cache/counter'

def test cache(cache): @
value = cache.get(COUNTER_KEY, @)
print("Counter before:", value)
cache.set(COUNTER _KEY, value + 1) @
value = cache.get(COUNTER_KEY, 0) @
print("Counter after:", value)
assert True ®

def hello():
print("Hello, pytesting world")

def test_capsys(capsys):
hello() @

out, err = capsys.readouterr() ®
print("STDOUT:", out)

def bhello():
print(b"Hello, binary pytesting world\n")

def test_capsysbinary(capsys):
bhello() ®
out, err = capsys.readouterr() @
print("BINARY STDOUT:", out)

def test_temp_dir1(tmpdir):
print("TEMP DIR:", str(tmpdir))

def test_temp_dir2(tmpdir):
print("TEMP DIR:", str(tmpdir))

def test_temp_dir3(tmpdir):
print("TEMP DIR:", str(tmpdir))

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python

@ cache persists values between test runs

195

@ cache fixture is similar to dictionary, but with .set() and .get() methods

® Make test successful

@ Call function that writes text to STDOUT

® Get captured output

® Call function that writes binary text to STDOUT
@ Get captured output

tmpdir fixture provides unique temporary folder name

© 2021 CJ Associates (rev1.0)

Chapter 6: Unit Testing with pytest

196

Table 5. Pytest Builtin Fixtures
Fixture

cache

capsys

capsysbinary

capfd

capfdbinary
doctest_namespace
pytestconfig
record_property
record_xml_attribute
caplog

monkeypatch

recwarn

tmp_path

tmp_path_factory

tmpdir

tmpdir_factory

Chapter 6: Unit Testing with pytest

Intermediate Python

Brief Description

Return cache object to persist state between testing sessions.
Enable capturing of writes (text mode) to sys.stdout and sys.stderr
Enable capturing of writes (binary mode) to sys.stdout and sys.stderr
Enable capturing of writes (text mode) to file descriptors 1 and 2
Enable capturing of writes (binary mode) to file descriptors 1 and 2
Return dict that will be injected into namespace of doctests
Session-scoped fixture that returns _pytest.config.Config object.
Add extra properties to the calling test.

Add extra xml attributes to the tag for the calling test.

Access and control log capturing.

Return monkeypatch fixture providing monkeypatching tools

Return WarningsRecorder instance that records all warnings emitted
by test functions.

Return pathlib.Path instance with unique temp directory

Return a _pytest.tmpdir.TempPathFactory instance for the test
session.

Return py.path.local instance unique to each test

Return TempdirFactory instance for the test session.

© 2021 CJ Associates (rev1.0)

Intermediate Python 197

Configuring fixtures

Create conftest.py

» Automatically included
» Provides

o Fixtures

o Hooks

> Plugins

* Directory scope
The conftest.py file can be used to contain user-defined fixtures, as well as hooks and plugins.
Subfolders can have their own conftest.py, which will only apply to tests in that folder.

In a test folder, define one or more fixtures in conftest.py, and they will be available to all tests in that
folder, as well as any subfolders.

Hooks

Hooks are predefined functions that will automatically be called at various points in testing. All hooks
start with pytest . A pytest.Function object, which contains the actual test function, is passed into the
hook.

For instance, pytest_runtest_setup() will be called before each test.

A complete list of hooks can be found here: https://docs.pytest.org/en/latest/

NOTE
reference.html#hooks

Plugins

There are many pytest plugins to provide helpers for testing code that uses common libraries, such as
Django or redis.

You can register plugins in conftest.py like so:
pytest_plugins = "plugin1", "plugin2",

This will load the plugins.

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

https://docs.pytest.org/en/latest/reference.html#hooks
https://docs.pytest.org/en/latest/reference.html#hooks

198 Intermediate Python

Example

pytests/stuff/conftest.py

#!/usr/bin/env python
from pytest import fixture

@fixture
def common_fixture(): @
return "DATA"

def pytest_runtest_setup(item): @
print("Hello from setup,”, item)

@ user-defined fixture

@ predefined hook (all hooks start with pytest_

Example

pytests/stuff/test_stuff.py

#!/usr/bin/env python
import pytest

def test one(): @
print("WHOOPEE")
assert(1)

def test two(common fixture): @
assert(common_fixture == "DATA")

if __name__ == ' main__'
pytest.main([__file__, "-s"]) ®

@ unit test that writes to STDOUT
@ unit test that uses fixture from conftest.py

® run tests (without stdout/stderr capture) when this script is run

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 199

pytests/stuff/test_stuff.py

====z=zzzzzzzzzzzzzzzzzzzzzz=== {est session starts =================z=z=z=z=z=zzzz====
platform darwin -- Python 3.7.6, pytest-6.2.3, py-1.9.0, pluggy-0.13.1

PyQt5 5.9.2 -- Qt runtime 5.9.7 -- Qt compiled 5.9.6

rootdir: /Users/jstrick/curr/courses/python/examples3

plugins: common-subject-1.0.4, fixture-order-0.1.3, lambda-1.2.0, hypothesis-5.5.4,
arraydiff-0.3, remotedata-0.3.2, openfiles-0.4.0, cov-2.11.1, mock-3.3.1, django-4.1.0,
doctestplus-0.5.0, qt-3.3.0, astropy-header-0.1.2, assert-utils-0.2.1

collected 2 items

pytests/stuff/test_stuff.py Hello from setup, <Function test_one>

WHOOPEE
.Hello from setup, <Function test_two>

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

200 Intermediate Python

Parametrizing tests

* Run same test on multiple values
» Add parameters to fixture decorator
» Test run once for each parameter

» Use pytest.mark.parametrize()

Many tests require testing a method or function against many values. Rather than writing a loop in the
test, you can automatically repeat the test for a set of inputs via parametrizing.

Apply the @pytest.mark.parametrize decorator to the test. The first argument is a string with the
comma-separated names of the parameters; the second argument is the list of parameters. The test will
be called once for each item in the parameter list. If a parameter list item is a tuple or other multi-
value object, the items will be passed to the test based on the names in the first argument.

For more advanced needs, when you need some extra work to be done before the test,
NOTE you can do indirect parametrizing, which uses a parametrized fixture. See
test_parametrize_indirect.py for an example.

NOTE The authors of pytest deliberately spelled it "parametrizing", not "parameterizing".

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 201

Example

pytests/test_parametrization.py

#!/usr/bin/env python
import pytest

def triple(x): @
return x * 3

test data = [(5, 15), ('a', 'aaa'), ([True], [True, True, True])] @

@pytest.mark.parametrize("input,result”, test_data) @
def test_triple(input, result): @
print("input {} result {}:".format(input, result)) @
assert triple(input) == result ®

if __name__ == "__main__
pytest.main([__file__, "-s'])

@ Function to test
@ List of values for testing containing input and expected result

3 Parametrize the test with the test data; the first argument is a string defining parameters to the test
and mapping them to the test data

@ The test expects two parameters (which come from each element of test data)

® Test the function with the parameters

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

202 Intermediate Python

pytests/test_parametrization.py

=====zzzzzzzzzzzzzzzzzzzzzz=== {est session starts =================z=z=z=z=zzzz=====
platform darwin -- Python 3.7.6, pytest-6.2.3, py-1.9.0, pluggy-0.13.1

PyQt5 5.9.2 -- Qt runtime 5.9.7 -- Qt compiled 5.9.6

rootdir: /Users/jstrick/curr/courses/python/examples3

plugins: common-subject-1.0.4, fixture-order-0.1.3, lambda-1.2.0, hypothesis-5.5.4,
arraydiff-0.3, remotedata-0.3.2, openfiles-0.4.0, cov-2.11.1, mock-3.3.1, django-4.1.0,
doctestplus-0.5.0, qt-3.3.0, astropy-header-0.1.2, assert-utils-0.2.1

collected 3 items

pytests/test_parametrization.py input 5 result 15:

.input a result aaa:
.input [True] result [True, True, True]:

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 203
Marking tests

 Create groups of tests ("test cases")
* Can create multiple groups

» Use @pytest.mark.somemark()
You can mark tests with labels so that they can be run as a group. Use @pytest.mark.marker (), where
marker is the marker (label), which can be any alphanumeric string.
Then you can run select tests which contain or match the marker, as described in the next topic.
In addition, you can register markers in the [pytest] section of pytest.ini, so they will be listed with

pytest --markers:

[pytest]
markers =
internet: test requires internet connection
slow: tests that take more time (omit with '-m "not slow")

pytest -m "mark"
pytest -m "not mark"

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

204 Intermediate Python

Example

pytests/test_mark.py

#!/usr/bin/env python
import pytest

@pytest.mark.alpha @
def test_one():
assert 1

@pytest.mark.alpha @
def test_two():
assert 1

@pytest.mark.beta @
def test_three():
assert 1

if __name__ == ' main__
pytest.main([__file__, "-m alpha']) ®

@ Mark with label alpha
@ Mark with label beta

® Only tests marked with alpha will run (equivalent to 'pytest -m alpha' on command line)

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 205

pytests/test_ mark.py

============================= test session starts ==============================
platform darwin -- Python 3.7.6, pytest-6.2.3, py-1.9.0, pluggy-0.13.1

PyQt5 5.9.2 -- Qt runtime 5.9.7 -- Qt compiled 5.9.6

rootdir: /Users/jstrick/curr/courses/python/examples3

plugins: common-subject-1.0.4, fixture-order-0.1.3, lambda-1.2.0, hypothesis-5.5.4,
arraydiff-0.3, remotedata-0.3.2, openfiles-0.4.0, cov-2.11.1, mock-3.3.1, django-4.1.0,
doctestplus-0.5.0, qt-3.3.0, astropy-header-0.1.2, assert-utils-0.2.1

collected 3 items / 1 deselected / 2 selected

pytests/test_mark.py .. [100%]

pytests/test_mark.py:4
/Users/jstrick/curr/courses/python/examples3/pytests/test_mark.py:4:
PytestUnknownMarkWarning: Unknown pytest.mark.alpha - is this a typo? You can register
custom marks to avoid this warning - for details, see
https://docs.pytest.org/en/stable/mark.html
@pytest.mark.alpha @

pytests/test_mark.py:8
/Users/jstrick/curr/courses/python/examples3/pytests/test_mark.py:8:
PytestUnknownMarkWarning: Unknown pytest.mark.alpha - is this a typo? You can register
custom marks to avoid this warning - for details, see
https://docs.pytest.org/en/stable/mark.html
@pytest.mark.alpha @

pytests/test_mark.py:12
/Users/jstrick/curr/courses/python/examples3/pytests/test_mark.py:12:
PytestUnknownMarkWarning: Unknown pytest.mark.beta - is this a typo? You can register
custom marks to avoid this warning - for details, see
https://docs.pytest.org/en/stable/mark.html
@pytest.mark.beta @

-- Docs: https://docs.pytest.org/en/stable/warnings.html
e e e e et ottt 2 passed, 1 dese1ect9d, 3 Warnings in 0_035 e et et e ettt e e et

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

206 Intermediate Python
Running tests (advanced)

* Run all tests
* Run by
- function
o class
- module

name match

o

o group

pytest provides many ways to select which tests to run.

Running all tests
To run all tests in the current and any descendent directories, use

Use -s to disable capturing, so anything written to STDOUT is displayed. Use -s for verbose output.

pytest

pytest -v
pytest -s
pytest -vs

Running by component

Use the node ID to select by component, such aas module, class, method, or function name:

file::class
file::class::test
file::::test

pytest test_president.py::test_dates
pytest test_president.py::test_dates::test_birth_date

Running by name match
Use -k to run all tests whose name includes a specified string

pytest -k date run all tests whose name includes 'date’

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 207
Skipping and failing

* Conditionally skip tests
» Completely ignore tests
* Decorate with
o @pytest.mark.xfail
o @pytest.mark.skip

To skip tests conditionally (or unconditionally), use @pytest.mark.skip(). This is useful if some tests rely
on components that haven’t been developed yet, or for tests that are platform-specific.

To fail on purpose, use @pytest.mark.xfail). This reports the test as "XPASS" or "xfail", but does not
provide traceback. Tests marked with xfail will not fail the test suite. This is useful for testing not-yet-
implemented features, or for testing objects with known bugs that will be resolved later.

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

208 Intermediate Python

Example

pytests/test_skip.py

#!/usr/bin/env python
import sys
import pytest

def test one(): @
assert 1

@pytest.mark.skip(reason="can not currently test") @
def test_two():
assert 1

@pytest.mark.skipif(sys.platform != 'win32', reason="only implemented on Windows") ®
def test_three():
assert 1

@pytest.mark.xfail @
def test_four():
assert 1

@pytest.mark.xfail @
def test_five():
assert 0
if __name__ == "__main__
pytest.main([__file__, '-v'])

@ Normal test
@ Unconditionally skip this test

® Skip this test if current platform is not Windows

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 209

pytests/test_skip.py

============================= test session starts ==============================
platform darwin -- Python 3.7.6, pytest-6.2.3, py-1.9.0, pluggy-0.13.1 --
/Users/jstrick/opt/anaconda3/bin/python

cachedir: .pytest_cache

hypothesis profile 'default' ->
database=DirectoryBasedExampleDatabase('/Users/jstrick/curr/courses/python/examples3/.hyp
othesis/examples")

PyQt5 5.9.2 -- Qt runtime 5.9.7 -- Qt compiled 5.9.6

rootdir: /Users/jstrick/curr/courses/python/examples3

plugins: common-subject-1.0.4, fixture-order-0.1.3, lambda-1.2.0, hypothesis-5.5.4,
arraydiff-0.3, remotedata-0.3.2, openfiles-0.4.0, cov-2.11.1, mock-3.3.1, django-4.1.0,
doctestplus-0.5.0, qt-3.3.0, astropy-header-0.1.2, assert-utils-0.2.1

collecting ... collected 5 items

pytests/test_skip.py::test_one PASSED [20%]
pytests/test_skip.py::test_two SKIPPED (can not currently test) [40%]
pytests/test_skip.py::test_three SKIPPED (only implemented on Windows) [60%]
pytests/test_skip.py::test_four XPASS [80%]
pytests/test_skip.py::test_five XFAIL [100%]

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

210 Intermediate Python
Mocking data

» Simulate behavior of actual objects
» Replace expensive dependencies (time/resources)

» Use unittest.mock or pytest-mock
Some objects have dependencies which can make unit testing difficult. These dependencies may be
expensive in terms of time or resources.

The solution is to use a mock object, which pretends to be the real object. A mock object behaves like
the original object, but is restricted and controlled in its behavior.

For instance, a class may have a dependency on a database query. A mock object may accept the query,
but always returns a hard-coded set of results.

A mock object can record the calls made to it, and assert that the calls were made with correct
parameters.

A mock object can be preloaded with a return value, or a function that provides dynamic (or random)
return values.

A stub is an object that returns minimal information, and is also useful in testing. However, a mock
object is more elaborate, with record/playback capability, assertions, and other features.

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 211
pymock objects

* Use pytest-mock plugin
o Can also use unittest.mock.Mock

 Emulate resources

pytest can use unittest.mock, from the standard library, or the pytest-mock plugin, which provides a
wrapper around unittest.mock

Once the pytest-mock module is installed, it provides a fixture named mocker, from which you can
create mock objects.

In either case, there are two primary ways of using mock. One is to provide a replacement class,
function, or data object that mimics the real thing.

The second is to monkey-patch a library, which temporarily (just during the test) replaces a component
with a mock version. The mocker.patch() function replaces a component with a mock object. Any calls
to the component are now recorded.

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

212 Intermediate Python

Example

pytests/test_mock_unittest.py

#!/usr/bin/env python

#

import pytest

from unittest.mock import Mock

ham = Mock() @

system under test
class Spam(): @
def __init__(self, param):
self._value = ham(param) @

@property
def value(self): @
return self. value

dependency to be mocked -- not used in test
def ham(n):
i pass

def test_spam_calls_ham(): &
_ = Spam(42) ®
ham.assert_called once with(42) @

if __name__ == "' main__
pytest.main([__file__])

@ Create mock version of ham() function

@ System (class) under test

® Calls ham() (doesn’t know if it’s fake)

@ Property to return result of ham()

® Actual unit test

® Create instance of Spam, which calls ham()

@ Check that spam.value correctly returns return value of ham()

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 213

pytests/test_mock_unittest.py

====z=zzzzzzzzzzzzzzzzzzzzzz=== {est session starts =================z=z=z=z=z=zzzz====
platform darwin -- Python 3.7.6, pytest-6.2.3, py-1.9.0, pluggy-0.13.1

PyQt5 5.9.2 -- Qt runtime 5.9.7 -- Qt compiled 5.9.6

rootdir: /Users/jstrick/curr/courses/python/examples3

plugins: common-subject-1.0.4, fixture-order-0.1.3, lambda-1.2.0, hypothesis-5.5.4,
arraydiff-0.3, remotedata-0.3.2, openfiles-0.4.0, cov-2.11.1, mock-3.3.1, django-4.1.0,
doctestplus-0.5.0, qt-3.3.0, astropy-header-0.1.2, assert-utils-0.2.1

collected 1 item

pytests/test_mock_unittest.py . [100%]

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

214 Intermediate Python

Example

pytests/test_ mock_pymock.py

#!/usr/bin/env python
import pytest @
import re @

class SpamSearch(): ®
def __init__(self, search_string, target_string):
self.search_string = search_string
self.target_string = target_string

def findit(self): @
return re.search(self.search_string, self.target_string)

def test_spam_search_calls_re_search(mocker): ®
mocker.patch('re.search') ®
s = SpamSearch('bug', 'lightning bug') @
_ = s.findit()
re.search.assert_called_once_with('bug', 'lightning bug') ©

if __name__ == "' main__
pytest.main([__file__, '-s'])

@ Needed for test runner

@ Needed for test (but will be mocked)

® System under test

@ Specific method to test (uses re.search)

® Unit test

® Patch re.search (i.e., replace re.search with a Mock object that records calls to it)
@ Create instance of SpamSearch

Call the method under test

© Check that method was called just once with the expected parameters

Start the test runner

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 215

pytests/test_ mock_pymock.py

====z=zzzzzzzzzzzzzzzzzzzzzz=== {est session starts =================z=z=z=z=z=zzzz====
platform darwin -- Python 3.7.6, pytest-6.2.3, py-1.9.0, pluggy-0.13.1

PyQt5 5.9.2 -- Qt runtime 5.9.7 -- Qt compiled 5.9.6

rootdir: /Users/jstrick/curr/courses/python/examples3

plugins: common-subject-1.0.4, fixture-order-0.1.3, lambda-1.2.0, hypothesis-5.5.4,
arraydiff-0.3, remotedata-0.3.2, openfiles-0.4.0, cov-2.11.1, mock-3.3.1, django-4.1.0,
doctestplus-0.5.0, qt-3.3.0, astropy-header-0.1.2, assert-utils-0.2.1

collected 1 item

pytests/test_mock_pymock.py . [100%]

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

216

Example

pytests/test_mock_play.py

#!/usr/bin/env python
import pytest
from unittest.mock import Mock

@pytest.fixture
def small_list(): @
return [1, 2, 3]

def test_ml _returns_correct_list(small_list):
m1 = Mock(return_value=small_list) @
mock result = m1('a', 'b'") ®
assert mock result == small_list @

m2 = Mock() ®

m2.spam('a', 'b') ®
m2.ham('wombat') ®
m2.eqgs(1, 2, 3) ®

print("mock calls:", m2.mock_calls) @

m2.spam.assert_called_with('a', 'b")

@ Create fixture that provides a small list

@ Create mock object that "returns" a small list
® Call mock object with arbitrary parameters
@ Check the mocked result

® Create generic mock object

® Call fake methods on mock object

@ Mock object remembers all calls

Assert that spam() was called with parameters 'a" and 'b’

pytests/test_mock_play.py

Intermediate Python

mock calls: [call.spam('a', 'b'), call.ham('wombat'), call.eggs(1, 2, 3)]

Chapter 6: Unit Testing with pytest

© 2021 CJ Associates (rev1.0)

Intermediate Python 217
Pytest plugins

e Common plugins

o pytest-qt
> pytest-django

There are some plugins for pytest that that integrate various frameworks which would otherwise be
difficult to test directly.

The pytest-qt plugin provides a qtbot fixture that can attach widgets and invoke events. This makes it
simpler to test your custom widgets.

The pytest-django plugin allows you to run Django with pytest-style tests rather than the default
unittest style.

See https://docs.pytest.org/en/latest/reference/plugin_list.html for a complete list of plugins. There are
currently 880 plugins!

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

https://docs.pytest.org/en/latest/reference/plugin_list.html

218 Intermediate Python

Pytest and Unittest

e Run Unittest-based tests

* Use Pytest test runner

The Pytest builtin test runner will detect Unittest-based tests as well. This can be handy for
transitioning legacy code to Pytest.

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 219

Chapter 6 Exercises

Exercise 6-1 (test_president_pytest.py)
Using pytest, Create some unit tests for the President class you created earlier.'
Suggestions for tests:

* What happens when an out-of-range term number is given?

* President 1’s first name is "George"

» All 45 presidential terms match the correct last name (use list of last names and parametrize)

* Confirm date fields return an object of type datetime.date

' If there was not an exercise where you created a President class, you can use president.py in the top-
level folder of the student guide.

© 2021 CJ Associates (rev1.0) Chapter 6: Unit Testing with pytest

220 Intermediate Python

Chapter 6: Unit Testing with pytest © 2021 CJ Associates (rev1.0)

Intermediate Python 221

Chapter 7: Database Access

Objectives

Understand the Python DB API architecture
* Connect to a database

» Execute simple and parameterized queries
* Fetch single and multiple row results

* Get metadata about a query

» Execute non-query statements

e Start transactions and commit or rollback as needed

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

222 Intermediate Python

The DB API

Most popular DB interface

Specification, not abstract class
* Many modules for different DBMSs

» Hides actual DBMS implementation

To make database programming simpler, Python has the DB API. This is an API to standardize working
with databases. When a package is written to access a database, it is written to conform to the API, and
thus programmers do not have to learn a new set of methods and functions.

DB API objects and methods

conn = package.connect(server, db)

cursor = conn.cursor()

num_lines = cursor.execute(query)

num_lines = cursor.execute(query-with-placeholders, param-iterable)

num_lines = cursor.executemany(query-with-placeholders, nested-param-iterable)
all rows = cursor.fetchall()

some_rows = cursor.fetchmany(n)

one_row = cursor.fetchone()

conn.commit()

conn.rollback()

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python

Table 6. Available Interfaces (using Python DB API-2.0)

Database

Firebird (and Interbase)

IBM DB2
Informix

Ingres

Microsoft SQL Server

MySQL
ODBC
Oracle

PostgreSQL

SAP DB (also known as "MaxDB")

SQLite

Sybase

NOTE

© 2021 CJ Associates (rev1.0)

Python package
KinterbasDB
ibm-db
informixdb
ingmod
pymssql
pymysql
pyodbc
cx_oracle
psycopg2
sapdbapi
sqlite3
Sybase

223

This list is not comprehensive, and there may be additional interfaces to some of the
listed DBMSs.

Chapter 7: Database Access

224 Intermediate Python

Connecting to a Server

* Import appropriate library
» Use connect() to get a database object

 Specify host, database, username, password

To connect to a database server, import the package for the specific database. Use the package’s
connect() method to get a database object, specifying the host, initial database, username, and
password. If the username and password are not needed, use None.

Argument names for the connect() method may not be consistent across packages. Most connect()
methods use individual arguments, such as host, database, etc., but some use a single string
argument.

When finished with the connection, call the close() method on the connection object.

Many database modules support the context manager (with statement), and will automatically close
the database when the with block is exited. Check the documentation to see how this is implemented
for a specific database.

Example

import pymysql

conn = pymysql.connect (host = "dbserver",
user = "adeveloper",
passwd = "s3cr3t",
db = "samples")

Interact with database here ...

conn.close()

import sqlite3

with sqlite3.connect('sample.db') as conn:
Interact with database here ...

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python 225

Table 7. connect() examples

Package Database Connection

IBM DB2 ibm-db import ibm_db_dbi as db2 + conn =
db2.connect("DATABASE=testdb;HOSTNAME=1ocalhost;PORT=50000;PROTOCOL
=TCPIP;UID=db2inst1;PWD=scripts;", "", "")

cx-Oracle Oracle ip = 'localhost' + port = 1521 + SID = 'YOURSIDHERE' + dsn_tns =
cx_Oracle.makedsn(ip, port, SID) + + db =
cx_Oracle.connect('adeveloper', '$3cr3t’, dsn_tns)

PostgreSQL psychopg psycopg2.connect (''" + host="localhost' + user="adeveloper' +
password="$3cr3t' + dbname="testdb' + ''")

note: connect() has one (string) parameter, not multiple parameters

MS-SQL pymssql pymssql.connect (+ host="localhost", + user="adeveloper", +
passwd="$3cr3t", + db="testdb", +)

pymssql.connect (+ dsn="DSN", +)

MySQL pymysql pymysql.connect (+ host="localhost", + user="adeveloper", +
passwd="$3cr3t", + db="testdb", +)

ODBC- pyodbc pyodbc.connect(''' + DRIVER={SQL Server}; + SERVER=localhost; +

compliant DB DATABASE=testdb; + UID=adeveloper; + PWD=$3cr3t + ''")

pyodbc.connect('DSN=testdsn;PWD=$3cr3t")
note: connect() has one (string) parameter, not multiple parameters

SqlLite3 sqlite3 sqlite3.connect('testdb") on-disk database (single file)
sqlite3.connect(':memory:") in-memory database

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

226 Intermediate Python

Creating a Cursor

* Cursor can execute SQL statements
* Create with cursor() method
* Multiple cursors available
o Standard cursor
= Returns tuples
o Other cursors
= Returns dictionaries

= Leaves data on server

Once you have a connection object, you can call cursor () to create a cursor object. A cursor is an object
that can execute SQL code and fetch results. One connection may have one or more active cursors.

The default cursor for most packages returns each row as a tuple of values. There are different types of
cursors that can return data in different formats, or that control whether data is stored on the client or
the server.

See db_*.py for examples using DB2, Postgres, MySQL, and MS-SQL. Most of the sqlite3

NOTE examples in this chapter are also implemented for MySQL, Postgres, and DB2, plus a
few extras.

Example

import sqlite3
conn = sqlite3.connect("sample.db")
cursor = conn.cursor()

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python 227
Executing a query statement

* Gets all data from query
o Use _cursor_.fetch{splat} to retrieve.

e Returns # rows in result set

Once you have a cursor, you can use it to execute queries via the execute() method. The first argument
to execute() is a string containing one SQL statement.

For queries, __cursor__.execute() returns the number of rows in the result set.

P J—

In Sqlite3, __cursor__.execute() returns the cursor object, so you can say
__cursor__.execute(__query__).fetchall().

NOTE
Example

cursor.execute("select hostname,ostype,user from hostinfo")
cursor.execute('insert into hostinfo values
("foo",5,"2.6","arch", "net",2055,3072,"bob",0)")

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

228 Intermediate Python

Fetching Data

* Use one of the fetch methods from the cursor object
* Syntax

o rec = cursor.fetchone()

o recs = cursor.fetchall()

o recs = cursor.fetchmany()

Cursors provide three methods for returning query results.

fetchone() returns the next available row from the query results.

fetchall() returns a tuple of all rows.

fetchmany(n) returns up to n rows. This is useful when the query returns a large number of rows.

In all cases, each row is returned as a tuple of values.

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python 229

Example

db_sqlite_basics.py
#!/usr/bin/env python
import sqlite3
with sqlite3.connect("../DATA/presidents.db") as conn: @
cursor = conn.cursor() @

#f select first name, last name from all presidents
cursor.execute('"'

select *

from presidents

Ill) @
print("Sqlite3 does not provide a row count\n") @

for row in cursor.fetchall(): ®
print(row)
print(" '.join(row)) ®

@ connect to the database
@ get a cursor object
® execute a SQL statement
@ (included for consistency with other DBMS modules)
® fetchall() returns all rows

® each row is a tuple

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

230 Intermediate Python

db_sqlite_basics.py

(37, 'Nixon', 'Richard Milhous', '1969-01-20', '1974-08-09', 'Yorba Linda', 'California’,
'1913-01-09", '1994-04-22', 'Republican')

(38, 'Ford', 'Gerald Rudolph', '1974-08-09', '1977-01-20', 'Omaha', 'Nebraska', '1913-07-
14", '2006-12-26', 'Republican')

(39, 'Carter', "James Earl 'Jimmy'", '1977-01-20', '1981-01-20', 'Plains', 'Georgia',
'1924-10-01"', None, 'Democratic')

(40, 'Reagan', 'Ronald Wilson', '1981-01-20', '1989-01-20', 'Tampico', 'Illinois', '1911-
02-06', '2004-06-05', 'Republican')

(41, 'Bush', 'George Herbert Walker', '1989-01-20', '1993-01-20', 'Milton',
'Massachusetts', '1924-06-12', None, 'Republican')

(42, 'Clinton', "William Jefferson 'Bill'", '1993-01-20', '2001-01-20', 'Hope',
"Arkansas', '1946-08-19', None, 'Democratic')

(43, 'Bush', 'George Walker', '2001-01-20', '2009-01-20', 'New Haven', 'Connecticut',
'1946-07-06", None, 'Republican')

(44, 'Obama', 'Barack Hussein', '2009-01-20', '2017-01-20', 'Honolulu', 'Hawaii', '1961-
08-04', None, 'Democratic')

(45, '"Trump', 'Donald J', '2017-01-20', '2021-01-20', 'Queens, NYC', 'New York', '1946-
06-14', None, 'Republican')

(46, 'Biden', 'Joseph Robinette', '2021-01-20', None, 'Scranton', 'Pennsylvania', '1942-
11-10', None, 'Democratic')

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python 231
Non-query statements

* Updates database
e Returns # rows in result set

* Must commit changes

The execute()method is also used to execute non-query statements.

As with queries, the first argument is a string containing one SQL statement. The optional second
argument is an iterable of values to fill in placeholders in a parameterized statement.

For most DB packages, execute() returns the number of rows affected.

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

232 Intermediate Python

Example

db_sqlite_add_row.py

#!/usr/bin/env python
from datetime import date
import sqlite3

with sqlite3.connect("../DATA/presidents.db") as s3conn: @
sql_insert = """
insert into presidents
(termnum, lastname, firstname, birthdate, deathdate, birthplace, birthstate,
termstart, termend, party)
values (?, 2, ?, 2?2, 2,2, 7,7,7,7)

new_row_data = [47, 'Ramirez', 'Mary', date(1968, 9, 22), None,
'Topeka', 'Kansas', date(2024, 1, 20), None, 'Independent']

cursor = s3conn.cursor()

try:
cursor.execute(sql_insert, new_row_data)
except (sqlite3.OperationalError, sqlite3.DatabaseError, sqlite3.DataError) as err:
print(err)
s3conn.rollback()
else:
s3conn.commit()

cursor.close()

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python 233

Example

db_sqlite_delete_row.py

#!/usr/bin/env python
from datetime import date
import sqlite3

with sqlite3.connect("../DATA/presidents.db") as conn: @
sql_delete = """

delete from presidents

where TERMNUM = 47

cursor = conn.cursor()

try:
cursor.execute(sql_delete)
except (sqlite3.DatabaseError, sqlite3.0perationalError, sqlite3.DataError) as err:
print(err)
conn.rollback()
else:
conn.commit()

cursor.close()

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

234 Intermediate Python
SQL Injection

* "Hijacks" SQL code
» Result of string formatting

» Always use parameterized statements

One kind of vulnerability in SQL code is called SQL injection. This occurs when an attacker embeds SQL
commands in input data. This can happen when naively using string formatting to build SQL
statements.

Since the programmer is generating the SQL code as a string, there is no way to check for malicious
SQL code. It is best practice to use parameterized statements.

Example

db_sql_injection.py

#!/usr/bin/env python

¥

good_input = 'Google'

malicious_input = "'; drop table customers; -- " @

naive_format = "select * from customers where company_name = '{}' and company_id != 0"

good_query = naive_format.format(good_input) @
malicious_query = naive_format.format(malicious_input) @

print("Good query:")
print(good_query) ®
print()

print("Bad query:")

print(malicious_query) @
@ input would come from a web form, for instance
@ string formatting naively adds the user input to a field, expecting only a customer name
® non-malicious input works fine

@ query now drops a table (- is SQL comment)

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python 235
db_sql_injection.py

Good query:
select * from customers where company_name = 'Google' and company_id != 0

Bad query:

select * from customers where company_name = ''; drop table customers; -- ' and
company_id != 0

NOTE see http://www.xkcd.com/327 for a well-known web comic on this subject.

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

http://www.xkcd.com/327

236 Intermediate Python

Parameterized Statements

Prevent SQL injection

* More efficient updates

Use placeholders in query

- Placeholders vary by DB

Pass iterable of parameters

* Use cursor.execute() or cursor.executemany()

For efficiency, you can iterate over of sequence of input datasets when performing a non-query SQL
statement. The execute() method takes a query, plus an iterable of values to fill in the placeholders. The
database manager will only parse the query once, then reuse it for subsequent calls to execute().

All SQL statements may be parameterized, including queries.
Parameterized statements also protect against SQL injection attacks.

Different database modules use different placeholders. To see what kind of placeholder a module uses,
check MODULE.paramstyle. Types include pyformat, meaning %s, and gmark, meaning ?.

The executemany() method takes a query, plus an iterable of iterables. It will call execute() once for
each nested iterable.

Table 8. Placeholders for SQL Parameters

Python package Placeholder for parameters
pymysql %s
cx_oracle param_name
pyodbc ?
pymssql %d for int, %s for str, etc.
Psychopg %s or %(param_name)s
sqlite3 ? or :param_name
TIP with the exception of pymssql the same placeholder is used for all column types.

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python 237

Example

db_sqlite_parameterized.py
#!/usr/bin/env python
import sqlite3

with sqlite3.connect("../DATA/presidents.db") as s3conn:
s3cursor = s3conn.cursor()

party_query = '"'
select firstname, lastname
from presidents

where party = ?

@

for party in 'Federalist', 'Whig':
print(party)
s3cursor.execute(party_query, (party,)) @
print(s3cursor.fetchall())
print()

@ ? is SQLite3 placeholder for SQL statement parameter; different DBMSs use different placeholders

@ second argument to execute() is iterable of values to fill in placeholders from left to right

db_sqlite_parameterized.py

Federalist
[('John', 'Adams')]

Whig

[('William Henry', 'Harrison'), ('John', 'Tyler'), ('Zachary', 'Taylor'), ('Millard',
"Fillmore')]

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

238 Intermediate Python

Example

db_sqlite_bulk_insert.py

#!/usr/bin/env python
import sqlite3

import os

import csv

DATA_FILE = '../DATA/fruit_data.csv'

DB_NAME = 'fruits.db'
DB_TABLE = 'fruits'

SQL_CREATE_TABLE = """
create table {DB_TABLE} (
id integer primary key,
name varchar(30),
unit varchar(30),
unitprice decimal(6, 2)
)
)

SQL_INSERT_ROW = f'"'
insert into {DB_TABLE} (name, unit, unitprice) values (?, 7, ?7)

O

SQL_SELECT _ALL = """
select name, unit, unitprice from {DB_TABLE}

def main():

Program entry point.

:return: None

conn, cursor = get_connection()
create_database(cursor)
populate_database(conn, cursor)
read_database(cursor)

cursor.close()
conn.close()

def get_connection():

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python

def

def

Get a connection to the PRODUCE database

:return: SQLite3 connection object.
if os.path.exists(DB_NAME):
os.remove(DB_NAME) @

conn = sqlite3.connect(DB_NAME) ®
cursor = conn.cursor()
return conn, cursor

create_database(cursor):

Create the fruit table

:param conn: The database connection
:return: None

cursor.execute(SQL_CREATE TABLE) ®

populate_database(conn, cursor):

Add rows to the fruit table

:param conn: The database connection
:return: None
with open(DATA_FILE) as file_in:
fruit_data = csv.reader(file_in, quoting=csv.QUOTE_NONNUMERIC)

try:

cursor.executemany (SQL_INSERT_ROW, fruit_data) @
except sqlite3.DatabaseError as err:

print(err)

conn.rollback()
else:

conn.commit()

def read_database(cursor):

if

_name__ == "'_main__

cursor.execute(SQL_SELECT_ALL)
for name, unit, unitprice in cursor.fetchall():
print('{:12s} {:5.2f}/{}'.format(name, unitprice, unit))

main()

© 2021 CJ Associates (rev1.0)

239

Chapter 7: Database Access

240

@ set name of database

@ SQL statement to create table

® parameterized SQL statement to insert one record

@ remove existing database if it exists

® connect to (new) database

® run SQL to create table

@ iterate over list of pairs and add each pair to the database
commit the inserts; without this, no data would be saved

@ build list of tuples containing fruit, price pairs

db_sqlite_bulk_insert.py

pomegranate ©0.99/each
cherry 2.25/pound
apricot 3.49/pound
date 1.20/pound
apple 0.55/pound
lemon 0.69/each
kiwi 0.88/each
orange 0.49/each
lime 0.49/each
watermelon 4.50/each
guava 2.88/pound
papaya 1.79/pound
fig 2.29/pound
pear 1.10/pound
banana 0.65/pound

Chapter 7: Database Access

Intermediate Python

© 2021 CJ Associates (rev1.0)

Intermediate Python 241
Dictionary Cursors

e Indexed by column name

* Not standardized in the DB API
The standard cursor provided by the DB API returns a tuple for each row. Most DB packages provide
other kinds of cursors, including user-defined versions.

A very common cursor is a dictionary cursor, which returns a dictionary for each row, where the keys
are the column names. Each package that provides a dictionary cursor has its own way of providing
the dictionary cursor, although they all work the same way.

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

242

Table 9. Dictionary Cursors
Python package
pymysql

cx_oracle

pyodbc

pgdb
pymssql

psychopg

sqlite3

Chapter 7: Database Access

Intermediate Python

How to get a dictionary cursor

import pymysql.cursors + conn =
pymysql.connect(..., + cursorclass =
pymysql.cursors.DictCursor +) + dcur =

conn.cursor()
all cursors will be dict cursors

dcur = conn.cursor(pymysql.cursors.DictCursor)
only this cursor will be a dict cursor

Not available
Not available

Not available

conn = pymssql.connect (..., as_dict=True) +
dcur = conn.cursor()

import psycopg2.extras + dcur =
conn.cursor(cursor_factory=psycopg.extras.DictCu
rsor)

conn = sqlite3.connect (...,
row_factory=sqlite3.Row) + dcur = conn.cursor()

conn.row_factory = sqlite3.Row + dcur =
conn.cursor()

© 2021 CJ Associates (rev1.0)

Intermediate Python 243

Example

db_sqlite_dict_cursor.py

#!/usr/bin/env python
import sqlite3

s3conn = sqlite3.connect("../DATA/presidents.db")
uncomment to make _all_ cursors dictionary cursors
conn.row_factory = sqlite3.Row

NAME _QUERY = '"'
select firstname, lastname

from presidents
where termnum < 5

cur = s3conn.cursor()

select first name, last name from all presidents
cur.execute(NAME_QUERY)

for row in cur.fetchall():
print(row)
print('-' * 50)

dict_cursor = s3conn.cursor() @

make _this_ cursor a dictionary cursor
dict_cursor.row_factory = sqlite3.Row @

select first name, last name from all presidents
dict_cursor.execute(NAME_QUERY)

for row in dict_cursor.fetchall():
print(row['firstname'], row['lastname']) ®

print('-" * 50)

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

244 Intermediate Python

db_sqlite_dict_cursor.py

('George', 'Washington')
('John', 'Adams')
("Thomas', 'lJefferson')
('James', 'Madison')
George Washington

John Adams

Thomas Jefferson

James Madison

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python 245
Metadata

* cursor.description returns tuple of tuples
* Fields

> name

o type_code

o display_size

o internal _size

o precision

o scale

o null ok

Once a query has been executed, the cursor’s description attribute is a tuple with metadata about the
columns in the query. It contains one tuple for each column in the query, containing 7 values
describing the column.

For instance, to get the names of the columns, you could say names = [d[0] for d in
cursor.description]

For non-query statements, cursor.description returns None.

The names are based on the query (with possible aliases), and not necessarily on the names in the
table.

NOTE Sqlite3 only provides column names.

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

246 Intermediate Python
Generic alternate cursors

* Create generator function
o Get column names from cursor.description()
o For each row
= Make object from column names and values
= Dictionary
= Named tuple

= Dataclass
Many database modules have a dictionary cursor built in. For those that don’t the iterrows_asdict()
function can be used with a cursor from any DB API-compliant package.

The example uses the metadata from the cursor to get the column names, and forms a dictionary by
zipping the column names with the column values. db_iterrows also provides iterrows_asnamedtuple(),
which returns each row as a named tuple.

The functions in db_iterrows return generator objects. When you loop over the generator object, each
element is a dictionary or a named tuple, depending on which function you called.

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python

Example

db_iterrows.py

#!/usr/bin/env python

Generic functions that can be used with any DB API compliant
package.

To use, pass in a cursor after execute()-ing a

SqL

query. Then iterate over the generator that is

returned

from collections import namedtuple
from dataclasses import make_dataclass

def

def

def

def

get_column_names(cursor):
return [desc[@] for desc in cursor.description]

iterrows_asdict(cursor):

"''Generate rows as dictionaries'''

column_names = get_column_names(cursor)

for cursor_row in cursor.fetchall():
row_dict = dict(zip(column_names, cursor_row))
yield row_dict

iterrows_asnamedtuple(cursor):
""'Generate rows as named tuples'''
column_names = get_column_names(cursor)
Row = namedtuple('Row', column_names)
for row in cursor.fetchall():

yield Row(*row)

iterrows_asdataclass(cursor):

"''Generate rows as dataclass instances'''
column_names = get_column_names(cursor)

Row = make_dataclass('row_tuple', column_names)

for cursor_row in cursor.fetchall():
row_instance = Row(*cursor_row)
yield row_instance

© 2021 CJ Associates (rev1.0)

247

Chapter 7: Database Access

248 Intermediate Python

db_iterrows.py

|]

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python 249
Transactions

» Transactions allow safer control of updates
» commit() to save transactions

» rollback() to discard

Sometimes a database task involves more than one change to your database (i.e., more than one SQL
statement). You don’t want the first SQL statement to succeed and the second to fail; this would leave
your database in a corrupt state.

To be certain of data integrity, use transactions. This lets you make multiple changes to your database
and only commit the changes if all the SQL statements were successful.

For all packages using the Python DB API, a transaction is started when you connect. At any point, you
can call __CONNECTION__.commit() to save the changes, or __CONNECTION__.rollback() to discard the
changes. If you don’t call commit() after modify a table, the data will not be saved.

You can also turn on autocommit, which calls conmit() after every statement. See the table below for
how autocommit is implemented in various DB packages.

Table 10. How to turn on autocommit

Package Method/Attribute

cx_oracle __conn__.autocommit = True

ibm_db_api __conn__.set_autocommit(True)

pymysql pymysql.connect(..., autocommit=True) + __or__ +
*__conn__.autocommit(True)

psycopg2 __conn__.autocommit = True

sqlite3 sqlite3.connect(__dbname__, isolation_level=None)

NOTE pymysql only supports transaction processing when using the InnoDB engine

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

250

Example

try:
for info in list_of_tuples:
cursor.execute(query,info)
except SQLError:
dbconn.rollback()
else:
dbconn.commit()

Chapter 7: Database Access

Intermediate Python

© 2021 CJ Associates (rev1.0)

Intermediate Python 251

Object-relational Mappers

No SQL required

» Maps a class to a table

All DB work is done by manipulating objects
* Most popular Python ORMs
o SQLAlchemy

> Django (which is a complete web framework)

An Object-relational mapper is a module or framework that creates a level of abstraction above the
actual database tables and SQL queries. As the name implies, a Python class (object) is mapped to the
actual table.

The two most popular Python ORMs are SQLAlchemy which is a standalone ORM, and Django ORM.
Django is a comprehensive Web development framework, which provides an ORM as a subpackage.
SQLAlchemy is the most fully developed package, and is the ORM used by Flask and some other Web
development frameworks.

Instead of querying the database, you call a search method on an object representing a table. To add a
row to the table, you create a new instance of the table class, populate it, and call a method like save().
You can create a large, complex database system, complete with foreign keys, composite indices, and
all the other attributes near and dear to a DBA, without writing the first line of SQL.

You can use Python ORMs in two ways.

One way is to design the database with the ORM. To do this, you create a class for each table in the
database, specifying the columns with predefined classes from the ORM. Then you run an ORM
command which executes the queries needed to build the database. If you need to make changes, you
update the class definitions, and run an ORM command to synchronize the actual DBMS to your
classes.

The second way is to map tables to an existing database. You create the classes to match the schemas
that have already been defined in the database. Both SQLAlchemy and the Django ORM have tools to
automate this process.

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

252 Intermediate Python
NoSQL

* Non-relational database
» Document-oriented
» Can be hierarchical (nested)
» Examples
> MongoDB
o Cassandra

o Redis
A current trend in data storage are called "NoSQL" or non-relational databases. These databases consist
of documents, which are indexed, and may contain nested data.
NoSQL databases don’t contain tables, and do not have relations.

While relational databases are great for tabular data, they are not as good a fit for nested data. Geo-
spatial, engineering diagrams, and molecular modeling can have very complex structures. It is possible
to shoehorn such data into a relational database, but a NoSQL database might work much better.
Another advantage of NoSQL is that it can adapt to changing data structures, without having to rebuild
tables if columns are added, deleted, or modified.

Some of the most common NoSQL database systems are MongoDB, Cassandra and Redis.

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python 253

Example

mongodb_example.py

#!/usr/bin/env python
import re
from pymongo import MongoClient, errors

FIELD_NAMES = (
"termnumber lastname firstname
'birthdate '
'"deathdate birthplace birthstate '
"termstartdate '
"termenddate '
"party’

).split() @

mc = MongoClient() @

try:
mc.drop_database("presidents") ®
except errors.PyMongoError as err:
print(err)

db = me["presidents"] @
coll = db.presidents ®

with open('../DATA/presidents.txt') as presidents_in: ®
for line in presidents_in:
flds = line[:-1].split(':")
kvpairs = zip(FIELD_NAMES, flds)
record_dict = dict(kvpairs)
coll.insert one(record dict) @

print(db.list_collection_names())
print()

abe = coll.find_one({'termnumber': '16'}) ©
print(abe, '\n')

for field in FIELD_NAMES:
print("{0:15s} {1}".format(field.upper(), abe[field])) @

print('-" * 50)

for president in coll.find(): @
print("{0[firstname]:25s} {@[lastname]:30s}".format(president))

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

254
print('-" * 50)

rx_lastname = re.compile('”roo', re.IGNORECASE)

for president in coll.find({'lastname': rx_lastname}): @
print("{0[firstname]:25s} {@[lastname]:30s}".format(president))

print('-" * 50)

for president in coll.find({"birthstate": 'Virginia'}): ®
print("{0[firstname]:25s} {@[lastname]:30s}".format(president))

print('-" * 50)

print("removing Millard Fillmore")

result = coll.delete one({'lastname': 'Fillmore'})
print(result)

result = coll.delete_one({'lastname': 'Roosevelt'})
print(result)

print('-" * 50)

result = coll.delete_one({'lastname': 'Bush'})
print(dir(result))
print()

result = coll.count_documents({}) @®
print(result)

for president in coll.find(): @
print("{0[firstname]:25s} {@[lastname]:30s}".format(president))
print('-" * 50)

animals = db.animals

print(animals, '\n")

animals.insert_one({'name': 'wombat', 'country': 'Australia'})
animals.insert_one({'name': 'ocelot', 'country': 'Mexico'})

animals.insert_one({'name': "honey badger', 'country': 'Iran'})

for doc in animals.find():
print(doc['name'])
@ define some field name
@ get a Mongo client
® delete presidents database if it exists

@ create a new database named presidents

Chapter 7: Database Access

Intermediate Python

© 2021 CJ Associates (rev1.0)

Intermediate Python

® get the collection from presidents db

® open a data file

@ insert a record into collection

get list of collections

@© search collection for doc where termnumber == 16

print all fields for one record

@ loop through all records in collection

@® find record using regular expression

® find record searching multiple fields

delete record

@® get count of records

mongodb_example.py

William Howard
Woodrow

Warren Gamaliel
Calvin

Herbert Clark
Frank1lin Delano
Harry S.

Dwight David
John Fitzgerald
Lyndon Baines
Richard Milhous
Gerald Rudolph
James Earl 'Jimmy'
Ronald Wilson

William Jefferson 'Bill'

George Walker
Barack Hussein
Donald John
Joseph Robinette

Taft
Wilson
Harding
Coolidge
Hoover
Roosevelt
Truman
Eisenhower
Kennedy
Johnson
Nixon
Ford
Carter
Reagan
Clinton
Bush
Obama
Trump
Biden

255

Collection(Database(MongoClient(host=["localhost:27017"'], document_class=dict,

tz_aware=False, connect=True), 'presidents'), 'animals')

wombat
ocelot
honey badger

© 2021 CJ Associates (rev1.0)

Chapter 7: Database Access

256

Chapter 7 Exercises

Exercise 7-1 (president_sqlite.py)

Intermediate Python

For this exercise, you can use the SQLite3 database provided, or use your own DBMS. The mkpres.sql
script is generic and should work with any DBMS to create and populate the presidents table. The
SQLite3 database is named presidents.db and is located in the DATA folder of the student files.

The data has the following layout

Table 11. Layout of President Table

Field Name

termnum
lastname
firstname
termstart
termend
birthplace
birthstate
birthdate

deathdate

party

Data Type
int(11)
varchar(32)
varchar(64)
date

date
varchar(128)
varchar(32)
date

date

varchar(32)

Null
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

Default
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

Refactor the president.py module to get its data from this table, rather than from a file. Re-run your
previous scripts that used president.py; now they should get their data from the database, rather than
from the flat file.

NOTE

If you created a president.py module as part of an earlier lab, use that. Otherwise, use
the supplied president.py module in the top folder of the student files.

Chapter 7: Database Access

© 2021 CJ Associates (rev1.0)

Intermediate Python 257

Exercise 7-2 (add_pres_sqlite.py)

Add the next president to the presidents database. Just make up the data —let’s keep this non-political.
Don’t use any real-life people.

SQL syntax for adding a record is
INSERT INTO table ("COL1-NAME",..) VALUES ("VALUE1",...)
To do a parameterized insert (the right way!):

INSERT INTO table ("COL1-NAME",..) VALUES (%s,%s,...) # MySQL
INSERT INTO table ("COL1-NAME",..) VALUES (?,7,...) # SQLite

or whatever your database uses as placeholders

NOTE There are also MySQL versions of the answers.

© 2021 CJ Associates (rev1.0) Chapter 7: Database Access

258 Intermediate Python

Chapter 7: Database Access © 2021 CJ Associates (rev1.0)

Intermediate Python 259

Chapter 8: Multiprogramming
Objectives

* Understand multiprogramming

» Differentiate between threads and processes
* Know when threads benefit your program

» Learn the limitations of the GIL

* Create a threaded application

» Implement a queue object

 Use the multiprocessing module

» Develop a multiprocessing application

© 2021 CJ Associates (rev1.0) Chapter 8: Multiprogramming

260 Intermediate Python
Multiprogramming

 Parallel processing
» Three main ways to achieve it
o threading
o multiple processes
> asynchronous communication

 All three supported in standard library

Computer programs spend a lot of their time doing nothing. This occurs when the CPU is waiting for
the relatively slow disk subsystem, network stack, or other hardware to fetch data.

Some applications can achieve more throughput by taking advantage of this slack time by seemingly
doing more than one thing at a time. With a single-core computer, this doesn’t really happen; with a
multicore computer, an application really can be executing different instructions at the same time.
This is called multiprogramming.

The three main ways to implement multiprogramming are threading, multiprocessing, and
asynchronous communication:

Threading subdivides a single process into multiple subprocesses, or threads, each of which can be
performing a different task. Threading in Python is good for 10-bound applications, but does not
increase the efficiency of compute-bound applications.

Multiprocessing forks (spawns) new processes to do multiple tasks. Multiprocessing is good for both
CPU-bound and I0-bound applications.

Asynchronous communication uses an event loop to poll multiple I/O channels rather than waiting for
one to finish. Asynch communication is good for I0-bound applications.

The standard library supports all three.

Chapter 8: Multiprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 261
What Are Threads?

 Like processes (but lighter weight)
» Process itself is one thread
* Process can create one more more additional threads

« Similar to creating new processes with fork()

Modern operating systems (0Ss) use time-sharing to manage multiple programs which appear to the
user to be running simultaneously. Assuming a standard machine with only one CPU, that simultaneity
is only an illusion, since only one program can run at a time, but it is a very useful illusion. Each
program that is running counts as a process. The OS maintains a process table, listing all current
processes. Each process will be shown as currently being in either Run state or Sleep state.

A thread is like a process. A thread might even be a process, depending on the implementation. In fact,
threads are sometimes called “lightweight” processes, because threads occupy much less memory, and
take less time to create, than do processes.

A process can create any number of threads. This is similar to a process calling the fork() function. The
process itself is a thread, and could be considered the "main" thread.

Just as processes can be interrupted at any time, so can threads.

© 2021 CJ Associates (rev1.0) Chapter 8: Multiprogramming

262 Intermediate Python
The Python Thread Manager

» Python uses underlying OS’s threads

Alas, the GIL - Global Interpreter Lock

Only one thread runs at a time

 Python interpreter controls end of thread’s turn

Cannot take advantage of multiple processors

Python “piggybacks” on top of the OS’s underlying threads system. A Python thread is a real OS thread.
If a Python program has three threads, for instance, there will be three entries in the OS’s thread list.

However, Python imposes further structure on top of the OS threads. Most importantly, there is a
global interpreter lock, the famous (or infamous) GIL. It is set up to ensure that (a) only one thread
runs at a time, and (b) that the ending of a thread’s turn is controlled by the Python interpreter rather
than the external event of the hardware timer interrupt.

The fact that the GIL allows only one thread to execute Python bytecode at a time simplifies the Python
implementation by making the object model (including critical built-in types such as dict) implicitly
safe against concurrent access. Locking the entire interpreter makes it easier for the interpreter to be
multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. The
takeaway is that Python does not currently take advantage of multi-processor hardware.

NOTE GIL is pronounced "jill", according to Guido__

For a thorough discussion of the GIL and its implications, see http://www.dabeaz.com/python/
UnderstandingGIL.pdf.

Chapter 8: Multiprogramming © 2021 CJ Associates (rev1.0)

http://www.dabeaz.com/python/UnderstandingGIL.pdf
http://www.dabeaz.com/python/UnderstandingGIL.pdf

Intermediate Python 263
The threading Module

» Provides basic threading services

* Also provides locks

» Three ways to use threads
o Instantiate Thread with a function
o Subclass Thread

> Use pool method from multiprocessing module

The threading module provides basic threading services for Python programs. The usual approach is to
subclass threading.Thread and provide a run() method that does the thread’s work.

© 2021 CJ Associates (rev1.0) Chapter 8: Multiprogramming

264 Intermediate Python
Threads for the impatient

* No class needed (created "behind the scenes")

» For simple applications

For many threading tasks, all you need is a run() method and maybe some arguments to pass to it.

For simple tasks, you can just create an instance of Thread, passing in positional or keyword
arguments.
Example

thr_noclass.py
#!/usr/bin/env python

import threading
import random
import time

def doit(num): @
time.sleep(random.randint(1, 3))
print("Hello from thread {}".format(num))

for i in range(10):
t = threading.Thread(target=doit, args=(i,)) @
t.start() ®

print("Done.") @

@ function to launch in each thread
@ create thread
® launch thread

@ "Done" is printed immediately — the threads are "in the background"

Chapter 8: Multiprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python

thr_noclass.py

Done.
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

© 2021 CJ Associates (rev1.0)

from
from
from
from
from
from
from
from
from
from

thread
thread
thread
thread
thread
thread
thread
thread
thread
thread

Ul & 2 OO0 N WNhNNO S

265

Chapter 8: Multiprogramming

266 Intermediate Python

Creating a thread class

Subclass Thread

Must call base class’s _init_ ()
* Must implement run()

* Can implement helper methods
A thread class is a class that starts a thread, and performs some task. Such a class can be repeatedly
instantiated, with different parameters, and then started as needed.

The class can be as elaborate as the business logic requires. There are only two rules: the class must
call the base class’s __init_ (), and it must implement a run() method. Other than that, the run() method
can do pretty much anything it wants to.

The best way to invoke the base class __init__() is to use super().

The run() method is invoked when you call the start() method on the thread object. The start() method
does not take any parameters, and thus run() has no parameters as well.

Any per-thread arguments can be passed into the constructor when the thread object is created.

Chapter 8: Multiprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python

Example

thr_simple.py

#!/usr/bin/env python

from threading import Thread

import random

import time

class SimpleThread(Thread):
__init__(self, num):
super().__init__() @
self. threadnum = num

def

def

run(self):
time.sleep(random.randint(1, 3))
print("Hello from thread {}".format(self._threadnum))

for 1 in range(10):

t = SimpleThread(i) ®
t.start() @

print("Done.")

@ call base class constructor — REQUIRED

@ the function that does the work in the thread

® create the thread

@ launch the thread

thr_simple.py

Done.
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

from
from
from
from
from
from
from
from
from
from

thread
thread
thread
thread
thread
thread
thread
thread
thread
thread

OO U1l N NS © P&~ W -

@

© 2021 CJ Associates (rev1.0)

267

Chapter 8: Multiprogramming

268 Intermediate Python
Variable sharing

 Variables declared before thread starts are shared
 Variables declared after thread starts are local

 Threads communicate via shared variables

A major difference between ordinary processes and threads how variables are shared.

Each thread has its own local variables, just as is the case for a process. However, variables that existed
in the program before threads are spawned are shared by all threads. They are used for
communication between the threads.

Access to global variables is controlled by locks.

Chapter 8: Multiprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 269

Example

thr_locking.py

#!/usr/bin/env python
import threading @
import random

import time

WORDS = 'apple banana mango peach papaya cherry lemon watermelon fig elderberry'.split()

MAX_SLEEP_TIME = 3

WORD_LIST = [] @

WORD_LIST_LOCK = threading.Lock() ®
STDOUT_LOCK = threading.Lock() ®

class SimpleThread(threading.Thread):
def __init__(self, num, word): @
super().__init__() ®
self. word = word
self. _num = num

def run(self): ®
time.sleep(random.randint(1, MAX_SLEEP_TIME))
with STDOUT_LOCK: @
print("Hello from thread {} ({})".format(self._num, self._word))

with WORD_LIST_LOCK: @
WORD_LIST.append(self._word.upper())

all_threads = []

for i, random_word in enumerate(WORDS, 1):
t = SimpleThread(i, random_word) ©
all_threads.append(t)
t.start() @

print("All threads launched...")

for t in all_threads:
t.join() ®

print(WORD_LIST)

© 2021 CJ Associates (rev1.0) Chapter 8: Multiprogramming

270

@ see multiprocessing.dummy.Pool for the easier way
@ the threads will append words to this list

® generic locks

@ thread constructor

® be sure to call parent constructor

® function invoked by each thread

@ acquire lock and release when finished

make list ("pool") of threads (but see Pool later in chapter)
@ create thread

add thread to "pool"

@ start thread

@ wait for thread to finish

thr_locking.py

A1l threads launched...

Hello from thread 9 (fig)

Hello from thread 10 (elderberry)
Hello from thread 5 (papaya)
Hello from thread 4 (peach)
Hello from thread 6 (cherry)
Hello from thread 1 (apple)
Hello from thread 3 (mango)
Hello from thread 7 (lemon)
Hello from thread 2 (banana)
Hello from thread 8 (watermelon)

Intermediate Python

['FIG', 'ELDERBERRY', 'PAPAYA', 'PEACH', 'CHERRY', "APPLE', 'MANGO', 'LEMON', 'BANANA',

"WATERMELON"]

Chapter 8: Multiprogramming

© 2021 CJ Associates (rev1.0)

Intermediate Python 271

Using queues

* Queue contains a list of objects
» Sequence is FIFO
» Worker threads can pull items from the queue

* Queue structure has builtin locks

Threaded applications often have some sort of work queue data structure. When a thread becomes
free, it will pick up work to do from the queue. When a thread creates a task, it will add that task to the
queue.

The queue must be guarded with locks. Python provides the Queue module to take care of all the lock
creation, locking and unlocking, and so on, so that you don’t have to bother with it.

Example

thr_queue.py

#!/usr/bin/env python

import random

import queue

from threading import Thread, Lock as tlock
import time

NUM_ITEMS
POOL_SIZE

25000
100

q = queue.Queue(d) @

shared list = []
shlist_lock = tlock() @
stdout_lock = tlock() @

class RandomWord(): ®
def __init__(self):
with open('../DATA/words.txt') as words_in:
self._words = [word.rstrip('\n\r') for word in words_in.readlines()]
self. num _words = len(self. words)

def __call_ (self):
return self._words[random.randrange(@, self._num_words)]

© 2021 CJ Associates (rev1.0) Chapter 8: Multiprogramming

272 Intermediate Python

class Worker(Thread): @
def __init__(self, name): ®

Thread. _init__(self)
self.name = name

def run(self): ®

while True:
try:
s1 = q.get(block=False) @
s2 = sT.upper() + '-' + s1.upper()

with shlist_lock:
shared_list.append(s2)

except queue.Empty: ©
break

)

random_word = RandomWord()

for i in range(NUM_ITEMS):
w = random_word()
q.put(w)

start_time = time.ctime()

@)
pool = []
for i in range(POOL_SIZE):
worker_name = "Worker {:c}".format(i + 65)
w = Worker(worker _name) @
w.start() ®
pool.append(w)

for t in pool:
t.join()

end_time = time.ctime()
print(shared_list[:20])

print(start_time)
print(end_time)

@ initialize empty queue

Chapter 8: Multiprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python

@ create locks

® define callable class to generate words
@ worker thread

® thread constructor

® function invoked by thread

@ get next item from thread

acquire lock, then release when done
© when queue is empty, it raises Empty exception
fill the queue

@ populate the threadpool

@ add thread to pool

® launch the thread

wait for thread to finish

thr_queue.py

273

['UNCELEBRATED-UNCELEBRATED', 'REHYDRATE-REHYDRATE', 'RESTORATION-RESTORATION',
'BOMBAZINES-BOMBAZINES', 'RESILES-RESILES', 'MESHING-MESHING', 'SENECIOS-SENECIOS',
"CLAMPS-CLAMPS', 'THIOL-THIOL', 'TROPHICALLY-TROPHICALLY', 'NECESSITATIONS-
NECESSITATIONS', 'COUNTERIRRITANT-COUNTERIRRITANT', 'NAVIGATOR-NAVIGATOR', 'ALKALIZE-
ALKALIZE', 'OVIPAROUS-OVIPAROUS', 'STRIKEOUTS-STRIKEOUTS', 'BROIDERIES-BROIDERIES',
"PROJECTIONIST-PROJECTIONIST', 'PLUMPEST-PLUMPEST', 'QUAKIEST-QUAKIEST']

Fri Nov 12 13:45:03 2021
Fri Nov 12 13:45:03 2021

© 2021 CJ Associates (rev1.0)

Chapter 8: Multiprogramming

274 Intermediate Python

Debugging threaded Programs

Harder than non-threaded programs

Context changes abruptly

Use pdb.trace

* Set breakpoint programmatically

Debugging is always tough with parallel programs, including threads programs. It’s especially difficult
with pre-emptive threads; those accustomed to debugging non-threads programs find it rather jarring
to see sudden changes of context while single-stepping through code. Tracking down the cause of
deadlocks can be very hard. (Often just getting a threads program to end properly is a challenge.)

Another problem which sometimes occurs is that if you issue a “next” command in your debugging
tool, you may end up inside the internal threads code. In such cases, use a “continue” command or
something like that to extricate yourself.

Unfortunately, threads debugging is even more difficult in Python, at least with the basic PDB
debugger.

One cannot, for instance, simply do something like this:

pdb.py buggyprog.py

This is because the child threads will not inherit the PDB process from the main thread. You can still
run PDB in the latter, but will not be able to set breakpoints in threads.

What you can do, though, is invoke PDB from within the function which is run by the thread, by calling
pdb.set trace() at one or more points within the code:

import pdb
pdb.set_trace()

In essence, those become breakpoints.

For example, we could add a PDB call at the beginning of a loop:

Chapter 8: Multiprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 275

import pdb
while True:

pdb.set_trace() # app will stop here and enter debugger
k = c.recv(1)
if k == 00:

break

You then run the program as usual, NOT through PDB, but then the program suddenly moves into

debugging mode on its own. At that point, you can then step through the code using the n or s
commands, query the values of variables, etc.

PDB’s ¢ (“continue”) command still works. Can you still use the b command to set additional
breakpoints? Yes, but it might be only on a one-time basis, depending on the context.

© 2021 CJ Associates (rev1.0) Chapter 8: Multiprogramming

276 Intermediate Python
The multiprocessing module

* Drop-in replacement for the threading module

Doesn’t suffer from GIL issues
» Provides interprocess communication

» Provides process (and thread) pooling

The multiprocessing module can be used as a replacement for threading. It uses processes rather than
threads to spread out the work to be done. While the entire module doesn’t use the same API as
threading, the multiprocessing.Process object is a drop-in replacement for a threading.Thread object.
Both use run() as the overridable method that does the work, and both use start() to launch. The syntax
is the same to create a process without using a class:

def myfunc(filename):
pass

p = Process(target=myfunc, args=('/tmp/info.dat',))

This solves the GIL issue, but the trade-off is that it’s slightly more complicated for tasks (processes) to
communicate. However, the module does the heavy lifting of creating pipes to share data.

The Manager class provided by multiprocessing allows you to create shared variables, as well as locks
for them, which work across processes.

On windows, processes must be started in the "if _ name__ == __main__" block, or they

NOTE
will not work.

Example

multi_processing.py

#!/usr/bin/env python

import sys

import random

from multiprocessing import Manager, Lock, Process, Queue, freeze_support
from queue import Empty

import time

NUM_ITEMS
POOL_SIZE

25000 @
100

Chapter 8: Multiprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 277

class RandomWord(): @
def __init_ (self):
with open('../DATA/words.txt') as words_in:
self._words = [word.rstrip('\n\r') for word in words_in]
self._num_words = len(self. words)

def call_(self): ®
return self._words[random.randrange(@, self._num_words)]

class Worker(Process): @

def __init__(self, name, queue, lock, result): ®
Process. _init__(self)
self.queue = queue
self.result = result
self.lock = lock
self.name = name

def run(self): ®

while True:
try:
word = self.queue.get(block=False) @
word = word.upper()

with self.lock:
self.result.append(word) ©

except Empty:
break

if __name__ == ' main__
if sys.platform == 'win32"':
freeze_support()

word_queue = Queue() @
manager = Manager() @
shared_result = manager.list() ®
result_lock = Lock()
random_word = RandomWord() @
for i in range(NUM_ITEMS):

w = random_word()

word_queue.put(w)

start_time = time.ctime()

© 2021 CJ Associates (rev1.0) Chapter 8: Multiprogramming

278 Intermediate Python

pool = [] @

for i in range(POOL_SIZE):
worker_name = "Worker {:03d}".format(i)
w = Worker(worker_name, word_queue, result_lock, shared_result)
#

w.start() @
pool.append(w)

for t in pool:
t.join()

end_time = time.ctime()

print((shared_result[-50:]))
print(len(shared_result))
print(start_time)
print(end_time)

@ set some constants

@ callable class to provide random words

® will be called when you call an instance of the class
@ worker class — inherits from Process

® initialize worker process

® do some work — will be called when process starts
@ get data from the queue

modify data

@ add to shared result

quit when there is no more data in the queue

@ create empty Queue object

@® create manager for shared data

®) create list-like object to be shared across all processes
create locks

® create callable RandomWord instance

fill the queue

@ create empty list to hold processes

populate the process pool

create worker process

actually start the process —note: in Windows, should only call X.start() from main(), and may not

Chapter 8: Multiprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 279

work inside an IDE
add process to pool
wait for each queue to finish

print last 50 entries in shared result
multi_processing.py

['DRAG"', 'GASELIER', 'STENOTYPY', 'FRAME', 'SNOWBALLS', 'ASSIZE', 'DUSTCOVERS',
'MICROMERES', 'BUNGEES', 'OVERNIGHTS', 'CRUMBERS', 'BARRELSFUL', 'NATURALNESS',
"GANTLETING', 'TEXTILES', 'DEGRINGOLADE', 'CZARDOMS', 'SYNCHROMESH', 'SUNDOWNERS',
"BOUSTROPHEDONIC', 'BLACKLEGS', "NONCONTRADICTORY', 'JAGS', 'SUBMUNITIONS', 'EFFULGES',
'AMBIDEXTERITIES', 'CAYMAN', 'LITHOLOGIES', 'SPURGALLING', 'SUBBASE', 'OWSEN',
'SEXAGENARIAN', 'PURCHASER', 'GINGIVAE', 'EMISSION', 'CLIMBERS', "UNSWEPT',
"INVALIDATORS', 'FROCKED', 'HEARTLAND', 'COMMISSARS', '"LACUNOSE', 'DELICACY',
"NONFLUENCIES', 'PLATTERFULS', 'WORKMATE', 'REPLANS', 'LOCALITES', 'SERVOMOTOR',
'DOURER"]

25000

Fri Nov 12 13:45:04 2021

Fri Nov 12 13:45:05 2021

© 2021 CJ Associates (rev1.0) Chapter 8: Multiprogramming

280 Intermediate Python

Using pools

* Provided by multiprocessing
* Both thread and process pools

« Simplifies multiprogramming tasks

For many multiprocessing tasks, you want to process a list (or other iterable) of data and do something
with the results. This is easily accomplished with the Pool object provided by the multiprocessing
module.

This object creates a pool of n processes. Call the .map() method with a function that will do the work,
and an iterable of data. map() will return a list the same size as the list that was passed in, containing
the results returned by the function for each item in the original list.

For a thread pool, import Pool from multiprocessing.dummy. It works exactly the same, but creates
threads.

Chapter 8: Multiprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 281

Example
proc_pool.py
#!/usr/bin/env python

import random
from multiprocessing import Pool

POOL_SIZE = 36 @

with open('../DATA/words.txt') as words_in:
WORDS = [w.strip() for w in words_in] @

random.shuffle(WORDS) ®

def my_task(word): @
return word.upper()

if name_ == "' main__
ppool = Pool(POOL_SIZE) ®

WORD_LIST = ppool.map(my_task, WORDS) ®
print(WORD_LIST[:20]) @
print("Processed {} words.".format(len(WORD_LIST)))

@ number of processes

@ read word file into a list, stripping off \n

® randomize word list

@ actual task

® create pool of POOL_SIZE processes

® pass wordlist to pool and get results; map assigns values from input list to processes as needed

@ print last 20 words

proc_pool.py
['GUIDING', 'SONORANTS', "CORPORATIONS', 'THWACK', 'INVEIGLERS', 'ADDRESSES',
"AGREEABILITY", 'METTLES', 'SUPERROAD', 'COMBUSTIBLES', 'JABS', 'BROMIDIC', 'GELLING',

'"MURDEREES', 'DESTRUCTS', 'TOPI', 'MERDES', 'TACK', 'SPARKLE', 'MANDATORS']
Processed 173466 words.

© 2021 CJ Associates (rev1.0) Chapter 8: Multiprogramming

282 Intermediate Python
Example
thr_pool.py

#!/usr/bin/env python

import random
from multiprocessing.dummy import Pool @

POOL_SIZE = 30 @

with open('../DATA/words.txt') as words_in:
WORDS = [w.strip() for w in words_in] ®

random.shuffle(WORDS) @

def my_task(word): ®
return word.upper()

tpool = Pool(POOL_SIZE) ®
WORD_LIST = tpool.map(my_task, WORDS) @
print(WORD_LIST[:20])

print("Processed {} words.".format(len(WORD_LIST)))

@ get the thread pool object
@ set # of threads to create
® get list of 175K words

@ shuffle the word list <5>

thr_poolpy

["OUTSWEARING', 'PEEKED', 'BORANES', 'SOLUBILIZES', 'MAN', 'THWARTER', 'OUTMUSCLING',
"NONSEGREGATION', 'CHEAPLY', 'HYPERIRRITABLE', 'TYRANNOUS', 'PENICILLIA', 'STAB',
"CLACKS', 'OTOSCOPY', 'CHAIN', 'TICKTACKED', 'TONOPLAST', 'TENSIOMETERS', 'RESENSITIZE']
Processed 173466 words.

Chapter 8: Multiprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 283

Example

thr_pool_mw.py

#!/usr/bin/env python

from multiprocessing.dummy import Pool @
from pprint import pprint

import requests

POOL_SIZE = 4
BASE_URL = 'https://www.dictionaryapi.com/api/v3/references/collegiate/json/' @
API_KEY = 'b619b55d-faa3-442b-a119-dd906adc79c8' @

search_terms = [@
'wombat ',
'frog', 'muntin', 'automobile', 'green', 'connect',
'vial', 'battery', 'computer', 'sing', 'park’,
'ladle', 'ram', 'dog', 'scalpel'

def fetch data(term): ®
try:
response = requests.get(
BASE _URL + term,
params={'key': API_KEY},
) ®
except requests.HTTPError as err:
print(err)
return []
else:
data = response.json() @
parts_of_speech = []
for entry in data:
if isinstance(entry, dict):
meta = entry.get("meta")
if meta:
part_of_speech = entry.get("f1")
if part_of_speech:
parts_of_speech.append(part_of_speech)
return sorted(set(parts_of_speech)) @©

p = Pool(POOL_SIZE)

results = p.map(fetch_data, search_terms) @

© 2021 CJ Associates (rev1.0) Chapter 8: Multiprogramming

284

for search_term, result in zip(search_terms, results):

print("{}:".format(search_term.upper()))
if result:

print(result)
else:

print("** no results **")

@® .dummy has Pool for threads
@ bhase url of site to access

® credentials to access site

@ terms to search for; each thread will search some of these terms

® function invoked by each thread for each item in list passed to map()

® make the request to the site

@ convert JSON to Python structure

loop over entries matching search terms

@ return list of parsed entries matching search term
create pool of POOL_SIZE threads

@ launch threads, collect results

@ iterate over results, mapping them to search terms

Chapter 8: Multiprogramming

®

Intermediate Python

© 2021 CJ Associates (rev1.0)

Intermediate Python 285
Alternatives to multiprogramming

* asyncio

o Twisted

Threading and forking are not the only ways to have your program do more than one thing at a time.
Another approach is asynchronous programming. This technique putting events (typically I/O events)
in a list, or queue, and starting an event loop that processes the events one at a time. If the granularity
of the event loop is small, this can be as efficient as multiprogramming.

Asynchronous programming is only useful for improving I/O throughput, such as networking clients
and servers, or scouring a file system. Like threading (in Python), it will not help with raw computation
speed.

The asyncio module in the standard library provides the means to write asynchronous clients and
servers.

The Twisted framework is a large and well-supported third-party module that provides support for
many kinds of asynchronous communication. It has prebuilt objects for servers, clients, and protocols,
as well as tools for authentication, translation, and many others. Find Twisted at
twistedmaxtrix.com/trac.

© 2021 CJ Associates (rev1.0) Chapter 8: Multiprogramming

286 Intermediate Python

Chapter 8 Exercises

For each exercise, ask the questions: Should this be multi-threaded or multi-processed? Distributed or
local?

Exercise 8-1 (pres_thread.py)

Using a thread pool (multiprocessing.dummy), calculate the age at inauguration of the presidents. To
do this, read the presidents.txt file into an array of tuples, and then pass that array to the mapping
function of the thread pool. The result of the map function will be the array of ages. You will need to
convert the date fields into actual dates, and then subtract them.

Exercise 8-2 (folder_scanner.py)

Write a program that takes in a directory name on the command line, then traverses all the files in that
directory tree and prints out a count of:

* how many total files
* how many total lines (count |n)

* how many bytes (Ien() of file contents)
HINT: Use either a thread or a process pool in combination with os.walk().

FOR ADVANCED STUDENTS

Exercise 8-3 (web_spider.py)

Write a website-spider. Given a domain name, it should crawl the page at that domain, and any other
URLs from that page with the same domain name. Limit the number of parallel requests to the web
server to no more than 4.

Exercise 8-4 (sum_tuple.py)

Write a function that will take in two large arrays of integers and a target. It should return an array of
tuple pairs, each pair being one number from each input array, that sum to the target value.

Chapter 8: Multiprogramming © 2021 CJ Associates (rev1.0)

Intermediate Python 287

Chapter 9: Network Programming

Objectives

* Download web pages or file from the Internet
* Consume web services
* Send e-mail using a mail server

* Learn why requests is the best HTTP client

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

288 Intermediate Python
Making HTTP requests

* Use the requests module
 Pythonic front end to urllib, urllib2, httplib, etc

» Makes HTTP transactions simple

The standard library provides the urllib package. It and its friends are powerful libraries, but their
interfaces are complex for non-trivial tasks. There is a lot of code to write if you want to provide
authentication, proxies, headers, or data, among other things.

The requests module is a much easier to use HTTP client module. It is included with the Anaconda
distribution, or is readily available from PyPI.

requests implements GET, POST, PUT, and other HTTP verbs, and takes care of all the protocol
housekeeping needed to send data on the URL, to send a username/password, and to retrieve data in
various formats.

non noon

To use requests, import the module and then call requests.VERB, where VERB is "get", "post"”, "put",
"patch”, "delete", or "head". The first argument to any of these methods is the URL, followed by any of
the named parameters for fine-tuning the request.

These methods return an HTTPResponse object, which contains the headers and data returned from
the HTTP server. If the URL refers to a web page, then the text attribute contains the text of the page as
a Python string.

In all cases, the content attribute contains the raw content from the server as a bytes string. If the
returned data is a JSON string, the json() method converts the JSON data into a Python nested list or
dictionary.

The status_code attribute contains the HTTP status code, normally 200 for a successful request.
For GET requests, URL parameters can be specified as a dictionary, using the params parameter.

For POST, PUT, or PATCH requests, the data to be uploaed can be specified as a dictionary using the
data parameter.

See details of the requests API at http://docs.python-requests.org/en/v3.0.0/api/#main-

TIP)
interface

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

http://docs.python-requests.org/en/v3.0.0/api/#main-interface
http://docs.python-requests.org/en/v3.0.0/api/#main-interface

Intermediate Python 289

Example

read_html requests.py

#!/usr/bin/env python
import requests

response = requests.get("https://www.python.org") @

for header, value in sorted(response.headers.items()): @
print("{:20.20s} {}".format(header, value))
print()

print(response.text[:200]) ®
print('...")
print(response.text[-200:]) @
@ requests.get() returns HTTP response object
@ response.headers is a dictionary of the headers
® The text is returned as a bytes object, so it needs to be decoded to a string; print the first 200 bytes
@ print the last 200 bytes

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

290 Intermediate Python

Example

read_pdf requests.py
#!/usr/bin/env python

import sys
import os

import requests

url =
"https://www.nasa.gov/pdf/739318main_ISS%20Utilization%20Brochure%202012%20Screenres%203-
8-13.pdf' @

saved_pdf_file = 'nasa_iss.pdf' @

response = requests.get(url) @
if response.status_code == requests.codes.0K: @
if response.headers.get('content-type') == "application/pdf':
with open(saved_pdf_file, 'wb') as pdf_in: ®
pdf_in.write(response.content) ®

if sys.platform == 'win32': @

cmd = saved_pdf_file
elif sys.platform == 'darwin':

cmd = 'open ' + saved_pdf_file
else:

cmd = 'acroread ' + saved_pdf_file

0s.system(cmd)

@ target URL

@ name of PDF file for saving

® open the URL

@ check status code

® open local file

® write data to a local file in binary mode; response.content is data from URL
@ select platform and choose the app to open the PDF file

launch the app

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 291

Example

web_content_consumer_requests.py

import sys
import requests

BASE_URL = 'https://www.dictionaryapi.com/api/v3/references/collegiate/json/' @

API_KEY = 'b619b55d-faa3-442b-a119-dd906adc79c8' @

def main(args):
if len(args) < 1:
print("Please specify a search term")
sys.exit(1)

response = requests.get(
BASE_URL + args[0],
params={ 'key': API_KEY},
ssl, proxy, cookies, headers, etc.

) ©®

if response.status_code == requests.codes.0K: # 2007
data = response.json() @
for entry in data: ®
if isinstance(entry, dict):
meta = entry.get("meta")
if meta:
part_of_speech = '({})'.format(entry.get('fl"))
word_id = meta.get("id")
print("{} {}".format(word_id.upper(), part_of_speech))
if "shortdef" in entry:
print('\n'.join(entry['shortdef']))
print()
else:
print(entry)

else:
print("Sorry, HTTP response", response.status_code)

if __name__ == "'__main__'
main(sys.argv[1:])

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

292 Intermediate Python

@ base URL of resource site
@ credentials
® send HTTP request and get HTTP response

@ convert JSON content to Python data structure

® check for results
web_content_consumer_requests.py wombat

WOMBAT (noun)

any of several stocky burrowing Australian marsupials (genera Vombatus and Lasiorhinus of
the family Vombatidae) resembling small bears

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 293

Table 12. Keyword Parameters for requests methods

Option Data Type Description
allow_redirects bool set to True if PUT/POST/DELETE redirect following is allowed
auth tuple authentication pair (user/token,password/key)
cert str or tuple path to cert file or (cert, key) tuple
cookies dict or cookies to send with request
CookieJar
data dict parameters for a POST or PUT request
files dict files for multipart upload
headers dict HTTP headers
json str JSON data to send in request body
params dict parameters for a GET request
proxies dict map protocol to proxy URL
stream bool if False, immediately download content
timeout float or tuple timeout in seconds or (connect timeout, read timeout) tuple
verify bool if True, then verify SSL cert

NOTE These can be used with any of the HTTP request types, as appropriate.

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

294 Intermediate Python

Table 13. requests.Response attributes

Attribute Definition

apparent_encoding Returns the apparent encoding

close() Closes the connection to the server

content Content of the response, in bytes

cookies A CookieJar object with the cookies sent back from the server
elapsed A timedelta object with the time elapsed from sending the request to

the arrival of the response

encoding The encoding used to decode r.text

headers A dictionary of response headers

history A list of response objects holding the history of request (url)

is_permanent_redirect True if the response is the permanent redirected url, otherwise False

is_redirect True if the response was redirected, otherwise False

iter_content() Iterates over the response

iter_lines() Iterates over the lines of the response

json() A JSON object of the result (if the result was written in JSON format, if
not it raises an error)

links The header links

next A PreparedRequest object for the next request in a redirection

ok True if status_code is less than 400, otherwise False

raise_for status() If an error occur, this method a HTTPError object

reason A text corresponding to the status code

request The request object that requested this response

status_code A number that indicates the status (200 is OK, 404 is Not Found)

text The content of the response, in unicode

url The URL of the response

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 295
Grabbing a web page the hard way

* import urlopen() from urllib.request

urlopen() similar to open()
* Read response

* Use info() for metadata

The standard library module urllib.request includes urlopen() for reading data from web pages.
urlopen() returns a file-like object. You can iterate over lines of HTML, or read all of the contents with
read().

The URL is opened in binary mode ; you can download any kind of file which a URL represents — PDF,
MP3, JPG, and so forth — by using read().

When downloading HTML or other text, a bytes object is returned; use decode() to

NOTE . .
convert it to a string.

In general, if you can install requests and use it, that is the preferred approach.

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

296 Intermediate Python

Example

read_html_urllib.py
#!/usr/bin/env python
import urllib.request
u = urllib.request.urlopen("https://www.python.org")

print(u.info()) @
print()

print(u.read(500).decode()) @

@ .info() returns a dictionary of HTTP headers

@ The text is returned as a bytes object, so it needs to be decoded to a string

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 297

read_html_urllib.py

Connection: close

Content-Length: 50697

Server: nginx

Content-Type: text/html; charset=utf-8
X-Frame-Options: DENY

Via: 1.1 vegur, 1.1 varnish, 1.1 varnish
Accept-Ranges: bytes

Date: Fri, 12 Nov 2021 18:45:07 GMT

Age: 174

X-Served-By: cache-bwi5144-BWI, cache-pdk17882-PDK
X-Cache: HIT, HIT

X-Cache-Hits: 3, 1

X-Timer: S1636742707.472437,VS@,VE7

Vary: Cookie

Strict-Transport-Security: max-age=63072000; includeSubDomains

<!doctype html>

<I--[if 1t IE 7]> <html class="no-js ieb 1t-ie7 1t-ie8 1t-ie9"> <![endif]-->
<I--[if IE 71> <html class="no-js ie7 1t-ie8 1t-ie9"> <!Tendif]-->
<I--[if IE 8]> <html class="no-js ie8 1t-ie9"> <I[endif]-->
<I--[if gt IE 8]><!--><html class="no-js" lang="en" dir="1tr"> <!--<I[endif]-->

<head>
<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<link rel="prefetch" href="//ajax.googleapis.com/ajax/1ibs/jqu

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

298 Intermediate Python

Example

read_pdf urllib.py
#!/usr/bin/env python

import sys
import os
from urllib.request import urlopen
from urllib.error import HTTPError

url to download a PDF file of a NASA ISS brochure

url =
"https://www.nasa.gov/pdf/739318main_ISS%20Utilization%20Brochure%202012%20Screenres%203-
8-13.pdf' @

saved_pdf_file = 'nasa_iss.pdf' @

try:
URL = urlopen(url) ®

except HTTPError as e: @
print("Unable to open URL:", e)
sys.exit(1)

pdf_contents = URL.read() ®
URL.close()

with open(saved_pdf_file, 'wb') as pdf_in:
pdf_in.write(pdf_contents) ®

if sys.platform == 'win32': @

cmd = saved_pdf_file
elif sys.platform == 'darwin':

cmd = 'open ' + saved_pdf_file
else:

cmd = 'acroread ' + saved_pdf_file

0s.system(cmd)

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python

@ target URL

@ name of PDF file for saving

® open the URL

@ catch any HTTP errors

® read all data from URL in binary mode

® write data to a local file in binary mode

@ select platform and choose the app to open the PDF file
launch the app

© 2021 CJ Associates (rev1.0)

299

Chapter 9: Network Programming

300 Intermediate Python

Consuming Web services the hard way

Use urllib.parse to URL encode the query.

Use urllib.request.Request

» Specify data type in header

Open URL with urlopen Read data and parse as needed

To consume Web services, use the urllib.request module from the standard library. Create a
urllib.request.Request object, and specify the desired data type for the service to return.

If needed, add a headers parameter to the request. Its value should be a dictionary of HTTP header
names and values.

For URL encoding the query, use urllib.parse.urlencode(). It takes either a dictionary or an iterable of
key/value pairs, and returns a single string in the format "K1=V1&K2=V2&..." suitable for appending to
a URL.

Pass the Request object to urlopen(), and it will return a file-like object which you can read by calling
its read() method.

The data will be a bytes object, so to use it as a string, call decode() on the data. It can then be parsed as
appropriate, depending on the content type.

the example program on the next page queries the Merriam-Webster dictionary API. It

NOTE
requires a word on the command line, which will be looked up in the online dictionary.

List of public RESTful APIs: http://www.programmableweb.com/apis/directory/1?

TIP
protocol=REST

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

http://www.programmableweb.com/apis/directory/1?protocol=REST
http://www.programmableweb.com/apis/directory/1?protocol=REST

Intermediate Python 301

Example

web_content_consumer_urllib.py

#!/usr/bin/env python

Fetch a word definition from Merriam-Webster's API
import sys

from urllib.request import Request, urlopen

import json

from pprint import pprint

DATA_TYPE = 'application/json'
API_KEY = 'b619b55d-faa3-442b-a119-dd906adc79c8’

URL_TEMPLATE =
"https://www.dictionaryapi.com/api/v3/references/collegiate/json/{}?key={}' @

def main(args):
if len(args) < 1:
print("Please specify a word to look up")
sys.exit(1)

search_term = args[0].replace(" ', '+')
url = URL_TEMPLATE.format(search_term, API_KEY) @
do_query(url)

def do_query(url):
print("URL:", url)
request = Request(url)
response = urlopen(request) ®
raw_json_string = response.read().decode() @
data = json.loads(raw_json_string) ®
print("RAW DATA:")
pprint(data)
for entry in data: ®
if isinstance(entry, dict):
meta = entry.get("meta") @
if meta:
part_of_speech = '({})'.format(entry.qget('fl"))
word_id = meta.get("id")
print("{} {}".format(word_id.upper(), part_of_speech))
if "shortdef" in entry:
print('\n'.join(entry['shortdef']))

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

302 Intermediate Python

print()
else:
print(entry)
if __name__ == "__main__":

main(sys.argv[1:])

@ base URL of resource site

@ build search URL

® send HTTP request and get HTTP response

@ read content from web site and decode() from bytes to str
® convert JSON string to Python data structure

® iterate over each entry in results

@ retrieve items from results (JSON convert to lists and dicts)

web_content_consumer_urllib.py dewars

URL: https://www.dictionaryapi.com/api/v3/references/collegiate/json/wombat?key=b619b55d-
faa3-442b-3119-dd906adc79c8

WOMBAT (noun)

any of several stocky burrowing Australian marsupials (genera Vombatus and Lasiorhinus of
the family Vombatidae) resembling small bears

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 303
sending e-mail

* import smtplib module
» Create an SMTP object specifying server

* Call sendmail() method from SMTP object
You can send e-mail messages from Python using the smtplib module. All you really need is one
smtplib object, and one method - sendmail().

Create the smtplib object, then call the sendmail() method with the sender, recipient(s), and the
message body (including any headers).

The recipients list should be a list or tuple, or could be a plain string containing a single recipient.

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

304 Intermediate Python

Example

email_simple.py

#!/usr/bin/env python

from getpass import getpass @

import smtplib @

from email.message import EmailMessage @
from datetime import datetime

TIMESTAMP = datetime.now().ctime() @

SENDER = 'jstrickemindspring.com'
RECIPIENTS = ['jstrickler@gmail.com']
MESSAGE_SUBJECT = 'Python SMTP example'

MESSAGE_BODY = """
Hello at {}.

Testing email from Python
"M format (TIMESTAMP)

SMTP_USER = 'pythonclass'
SMTP_PASSWORD = getpass("Enter SMTP server password:") ®

smtpserver = smtplib.SMTP("smtp2go.com", 2525) ®
smtpserver.login(SMTP_USER, SMTP_PASSWORD) @

msg = EmailMessage()
msg.set_content(MESSAGE_BODY) ©
msg['Subject'] = MESSAGE_SUBJECT @
msg['from'] = SENDER @

msg['to'] = RECIPIENTS @

try:

smtpserver.send_message(msg) @
except smtplib.SMTPException as err:

print("Unable to send mail:", err)
finally:

smtpserver.quit()

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python

® module for hiding password

@ module for sending email

® module for creating message

@ get a time string for the current date/time
® get password (not echoed to screen)
® connect to SMTP server

@ log into SMTP server

create empty email message

© add the message body

add the message subject

@ add the sender address

@ add a list of recipients

® send the message

disconnect from SMTP server

© 2021 CJ Associates (rev1.0)

305

Chapter 9: Network Programming

306 Intermediate Python

Email attachments

Create MIME multipart message

Create MIME objects

Attach MIME objects

 Serialize message and send

To send attachments, you need to create a MIME multipart message, then create MIME objects for each
of the attachments, and attach them to the main message. This is done with various classes provided by
the email.mime module.

These modules include multipart for the main message, text for text attachments, image for image
attachments, audio for audio files, and application for miscellaneous binary data.

One the attachments are created and attached, the message must be serialized with the as_string()
method. The actual transport uses smptlib, just like simple email messages described earlier.

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python

Example

email_attach.py

#!/usr/bin/env python

import smtplib

from datetime import datetime

from imghdr import what @

from email.message import EmailMessage @
from getpass import getpass @

SMTP_SERVER = "smtp2go.com" @

SMTP_PORT

SMTP_USER

2525

"pythonclass’

SENDER = "jstrick@mindspring.com'
RECIPIENTS = ['jstrickler@gmail.com']

def

def

def

main():
smtp_server = create_smtp_server()
now = datetime.now()
msg = create_message(
SENDER,
RECIPIENTS,
'"Here is your attachment',

307

'Testing email attachments from python class at {}\n\n'.format(now),

)
add_text_attachment('../DATA/parrot.txt’, msg)

add_image_attachment('../DATA/felix_auto.jpeg', msg)
send_message(smtp_server, msg)

create_message(sender, recipients, subject, body):
msg = EmailMessage() ®

msg.set_content(body) ®

msg['From'] = sender

msg['To'] = recipients

msg['Subject'] = subject

return msg

add_text_attachment(file_name, message):

with open(file_name) as file_in: @
attachment_data = file_in.read()

message.add_attachment(attachment_data) ®

© 2021 CJ Associates (rev1.0)

Chapter 9: Network Programming

308 Intermediate Python

def add_image_attachment(file_name, message):
with open(file_name, 'rb') as file_in: ©
attachment_data = file_in.read()
image_type = what(None, h=attachment_data) @
message.add_attachment(attachment_data, maintype='image', subtype=image_type) @

def create_smtp_server():
password = getpass("Enter SMTP server password:") @
smtpserver = smtplib.SMTP(SMTP_SERVER, SMTP_PORT) @®
smtpserver.login(SMTP_USER, password)

return smtpserver

def send_message(server, message):
try:
server.send_message(message) @
finally:
server.quit()

if __name__ == ' main__
main()

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 309

@ module to determine image type
@ module for creating email message
® module for reading password privately

@ global variables for external information (IRL should be from environment — command line, config
file, etc.)

® create instance of EmailMessage to hold message

® set content (message text) and various headers

@ read data for text attachment

add text attachment to message

@ read data for binary attachment

get type of binary data

@ add binary attachment to message, including type and subtype (e.g., "image/jpg)"
@® get password from user (don’t hardcode sensitive data in script)

® create SMTP server connection

log into SMTP connection

® send message

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

310 Intermediate Python

Remote Access

» Use paramiko (not part of standard library)
* Create ssh client

 Create transport object to use sftp and other tools

For remote access to other computers, you generally use the SSH protocol. Python has several ways to
use SSH.

The current best way is to use paramiko. It is a pure-Python module for connecting to other computers
using SSH. It is not part of the standard library, but is included with the Anaconda distribution.

Paramiko is used by Ansible and other sys admin tools.

Find out more about paramiko at http://www.lag.net/paramiko/

Find out more about Ansible at http://www.ansible.com/

Find out more about ssh2-python, an alternative to Paramiko, at https://parallel-
ssh.org/post/ssh2-python/

NOTE

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

http://www.lag.net/paramiko/
http://www.ansible.com/
https://parallel-ssh.org/post/ssh2-python/
https://parallel-ssh.org/post/ssh2-python/

Intermediate Python 311

Auto-adding hosts

Interactive SSH prompts to add new host
» Programmatic interface can’t do that
» Use set_missing host_key_policy()

Adds to list of known hosts.

The first time you connect to a new host with SSH, you get the following message:

The authenticity of host HOSTNAME can't be established.
ECDSA key fingerprint is HOSTNAME
Are you sure you want to continue connecting...

To avoid the message when using Paramiko, call set_missing host_key_policy() from the Paramiko
SSH client object:

ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

312 Intermediate Python

Remote commands

* Use SSHClient

 Access standard I/O channels
To run commands on a remote computer, use SSHClient. Once you connect to the remote host, you can
execute commands and access the standard I/O of the remote program.

The exec_command() method executes a command on the remote host, and returns a 3-tuple with the
remote command’s stdin, stdout, and stderr as file-like objects.

You can read from stdout and stderr, and write to stdin.

With some versions of paramiko, the stdin object returned by exec_command() must
NOTE be explicitly set to None, or deleted with DEL after use. Otherwise, an error will be

raised.

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 313

Example

paramiko_commands.py
#!/usr/bin/env python
import paramiko
with paramiko.SSHClient() as ssh: @
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) @
ssh.connect('localhost', username='python', password='101z') ®

stdin, stdout, stderr = ssh.exec_command('whoami') @
print(stdout.read().decode()) ®
print('-" * 60)

stdin, stdout, stderr = ssh.exec_command('ls -1') @
print(stdout.read().decode()) ®
print('-" * 60)

stdin, stdout, stderr = ssh.exec_command('ls -1 /etc/passwd /etc/horcrux') @
print("STDOUT:")

print(stdout.read().decode()) ®

print("STDERR:")

print(stderr.read().decode()) ®

print('-" * 60)

del stdin # workaround for paramiko bug!

@ create paramiko client

@ ignore missing keys (this is safe)

® connect to remote host

@ execute remote command; returns standard I/O objects
® read stdout of command

® read stderr of command

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

314 Intermediate Python

paramiko_commands.py

python
total 384
drwx------ + 3 python staff 96 Feb 11 2021 Desktop
drwx------ + 3 python staff 96 Feb 11 2021 Documents
drwx------ + 3 python staff 96 Feb 11 2021 Downloads
drwWx--=-=- @ 50 python staff 1600 Sep 14 07:12 Library
drwx------ + 3 python staff 96 Feb 11 2021 Movies
drwx------ + 3 python staff 96 Feb 11 2021 Music
drwx------ + 3 python staff 96 Feb 11 2021 Pictures
drwxr-xr-x+ 4 python staff 128 Feb 11 2021 Public
-rw-r--r-- 1 python staff 148544 May 27 16:16 alice.txt
drwxr-xr-x 2 python staff 64 May 27 16:00 foo
drwxr-xr-x 2 python staff 64 May 27 16:16 testing

3

drwxr-xr-x python staff 96 Feb 18 2021 text_files

STDOUT:
-rw-r--r-- 1 root wheel 6946 Jun 5 2020 /etc/passwd

STDERR:
1s: /etc/horcrux: No such file or directory

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 315
Copying files with SFTP

* Create transport

* Create SFTP client with transport
To copy files with paramiko, first create a Transport object. Using a with block will automatically close
the Transport object.

From the transport object you can create an SFTPClient. Once you have this, call standard FTP/SFTP
methods on that object.

Some common methods include listdir_iter(), get(), put(), mkdir(), and rmdir().

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

316 Intermediate Python

Example

paramiko_copy_files.py

#!/usr/bin/env python
import os
import paramiko

REMOTE_DIR = "text_files'

with paramiko.Transport(('localhost', 22)) as transport: @
transport.connect(username="python', password='101z') @
sftp = paramiko.SFTPClient.from_transport(transport) ®
for item in sftp.listdir_iter(): @
print(item)
print('-" * 60)

remote_file = os.path.join(REMOTE_DIR, 'betsy.txt') ®
sftp.mkdir("testing")

sftp.put(local-file)

sftp.put(local-file, remote-file)
sftp.put('../DATA/alice.txt', 'text_files/betsy.txt') ®
sftp.put('../DATA/alice.txt', 'alice.txt")
sftp.put('../DATA/alice.txt', '"text_files')
sftp.get(remote_file, 'eileen.txt') @

@ create paramiko Transport instance

@ connect to remote host

® create SFTP client using Transport instance

@ get list of items on default (login) folder (listdir_iter() returns a generator)
® create path for remote file

® create a folder on the remote host

@ copy a file to the remote host

copy a file from the remote host

©@ use SSHClient to confirm operations (not needed, just for illustration)

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 317

paramiko_copy_files.py

drwx------ 1 503 20 96 11 Feb 2021 Music
-f--=----- 1 503 20 7 14 Sep 07:09 .CFUserTextEncoding
drwx------ 1 503 20 96 11 Feb 2021 Pictures
drwxr-xr-x 1 503 20 96 18 Feb 2021 text files
-rw-r--r-- 1 503 20 148544 27 May 16:16 alice.txt
-rW------- 1 503 20 135 14 Sep 07:13 .zsh_history
drwx------ 1 503 20 96 11 Feb 2021 Desktop
drwx------ 1 503 20 1600 14 Sep 07:12 Library
drwxr-xr-x 1 503 20 64 27 May 16:16 testing
drwxr-xr-x 1 503 20 128 11 Feb 2021 Public
drwxr-xr-x 1 503 20 64 27 May 16:00 foo
drwx------ 1 503 20 96 11 Feb 2021 Movies
drwx------ 1 503 20 96 11 Feb 2021 Documents
drwx------ 1 503 20 96 11 Feb 2021 Downloads

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

318 Intermediate Python

Interactive remote access

o Write to stdin

* Read response from stdout
To interact with a remote program, write to the stdin object returned by ssh_object.exec_command().

stdin.write("command input....\n")

Be sure to add a newline (|n) for each line of input you send.

To get the response, read the next line(s) of code with stdout.readline()

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

Intermediate Python 319

Example

paramiko_interactive.py

#!/usr/bin/env python
import paramiko
bc is an interactive calculator that comes with Unix-like systems (Linux, Mac, etc.)

with paramiko.SSHClient() as ssh: @
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) @

ssh.connect('localhost', username='python', password='101z') ®
stdin, stdout, stderr = ssh.exec_command('bc') @

stdin.write("17 + 25\n") ®
result = stdout.readline() ®
print("Result is:", result)

stdin.write("scale = 3\n") @
stdin.write("738.3/191.9\n")
result = stdout.readline()
print("Result is:", result)

stdin.write("quit\n")
stdin = None @©

@ create paramiko SSH client

@ auto-add remote host

® log into to remote host

@ execute command,; returns file-like objects representing stdio
® write to command’s stdin

® read output of command

@ set scale (# decimal points) to 3 (bc-specific command)

paramiko_interactive.py
Result is: 42

Result is: 3.847

© 2021 CJ Associates (rev1.0) Chapter 9: Network Programming

320 Intermediate Python

Chapter 9 Exercises

Exercise 9-1 (fetch_xkcd_requests.py, fetch_xkcd_urllib.py)

Write a script to fetch the following image from the Internet and display it. http://imgs.xkcd.com/
comics/python.png

Exercise 9-2 (wiki_links_requests.py, wiki_links_urllib.py)

Write a script to count how many links are on the home page of Wikipedia. To do this, read the page
into memory, then look for occurrences of the string "href". (For real screen-scraping, you can use the
Beautiful Soup module.)

You can use the string method find(), which can be called like S.find(text, start, stop), which finds on a
slice of the string, moving forward each time the string is found.

Exercise 9-3 (send_chimp.py)

If the class conditions allow it (i.e., if you have access to the Internet, and an SMTP account), send an
email to yourself with the image chimp.bmp (from the DATA folder) attached.

Chapter 9: Network Programming © 2021 CJ Associates (rev1.0)

http://imgs.xkcd.com/comics/python.png
http://imgs.xkcd.com/comics/python.png

Intermediate Python 321

Chapter 10: Effective Scripts
Objectives

* Launch external programs

* Check permissions on files

» Get system configuration information
» Store data offline

* Create Unix-style filters

» Parse command line options

* Configure application logging

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

Using glob

* Expands wildcards
 Windows and non-windows

» Useful with subprocess module

Intermediate Python

When executing external programs, sometimes you want to specify a list of files using a wildcard. The
glob function in the glob module will do this. Pass one string containing a wildcard (such as *.txt) to
glob(), and it returns a sorted list of the matching files. If no files match, it returns an empty list.

Example

glob_example.py
#!/usr/bin/env python
from glob import glob

files = glob('../DATA/*.txt"') @
print(files, '\n")

no_files = glob('../JUNK/*.avi")
print(no_files, "\n")

@ expand file name wildcard into sorted list of matching names

Chapter 10: Effective Scripts

© 2021 CJ Associates (rev1.0)

Intermediate Python 323

glob_example.py

['../DATA/presidents_plus_biden.txt", '../DATA/columns_of_numbers.txt',
'../DATA/poe_sonnet.txt"', '../DATA/computer_people.txt', '../DATA/owl.txt',
'../DATA/eqgs.txt", '../DATA/world_airport_codes.txt", '../DATA/stateinfo.txt"',
"../DATA/fruit2.txt', '../DATA/us_airport_codes.txt', '../DATA/parrot.txt',
'../DATA/http_status_codes.txt', '../DATA/fruitl.txt', '../DATA/alice.txt',
"../DATA/littlewomen.txt', '../DATA/spam.txt', '../DATA/world_median_ages.txt',
'../DATA/phone_numbers.txt', '../DATA/sales_by_month.txt', '../DATA/engineers.txt',
"../DATA/underrated.txt", '../DATA/tolkien.txt", '../DATA/tyger.txt"',
'../DATA/example_data.txt', '../DATA/states.txt', '../DATA/kjv.txt", '../DATA/fruit.txt",
'../DATA/areacodes.txt', '../DATA/float_values.txt', '../DATA/unabom.txt',
"../DATA/chaos.txt', '../DATA/noisewords.txt", '../DATA/presidents.txt’,
'../DATA/bible.txt', '../DATA/breakfast.txt', '../DATA/Pride_and_Prejudice.txt',
"../DATA/nsfw_words.txt", '../DATA/mary.txt"',
'../DATA/2017FullMembersMontanalegislators.txt', '../DATA/badger.txt’,
"../DATA/README.txt"', '../DATA/words.txt', '../DATA/primeministers.txt',
'../DATA/nc_counties_avg_wage.txt", '../DATA/grail.txt", '../DATA/alt.txt',
"../DATA/knights.txt", '../DATA/world_airports_codes_raw.txt',
"../DATA/correspondence.txt']

[]

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

324 Intermediate Python
Using shlex.split()

 Splits string

* Preserves white space
If you have an external command you want to execute, you should split it into individual words. If
your command has quoted whitespace, the normal split() method of a string won’t work.

For this you can use shlex.split(), which preserves quoted whitespace within a string.

Example

shlex_split.py

#!/usr/bin/env python
#
import shlex

cmd = 'herp derp "fuzzy bear" "wanga tanga" pop' @

print(emd.split()) @
print()

print(shlex.split(emd)) &

@® Command line with quoted whitespace
@ Normal split does the wrong thing
® shlex.split() does the right thing

shlex_split.py
['herp', 'derp', '"fuzzy', 'bear"', '""wanga', 'tanga"', 'pop'l]

['herp', 'derp', 'fuzzy bear', 'wanga tanga', 'pop']

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python 325
The subprocess module

» Spawns new processes
» works on Windows and non-Windows systems
» Convenience methods

o run()

o call(), check call()

The subprocess module spawns and manages new processes. You can use this to run local non-Python
programs, to log into remote systems, and generally to execute command lines.

subprocess implements a low-level class named Popen; However, the convenience methods run(),
check_call(), and check_output(), which are built on top of Popen(), are commonly used, as they
have a simpler interface. You can capture *stdout and stderr, separately. If you don’t capture them,
they will go to the console.

In all cases, you pass in an iterable containing the command split into individual words, including any
file names. This is why this chapter starts with glob.glob() and shlex.split().

Table 14. CalledProcessError attributes

Attribute Description

args The arguments used to launch the process. This may be a list or a string.

returncode Exit status of the child process. Typically, an exit status of 0 indicates that it ran
successfully.
A negative value -N indicates that the child was terminated by signal N (POSIX
only).

stdout Captured stdout from the child process. A bytes sequence, or a string if run() was

called with an encoding or errors. None if stdout was not captured.
If you ran the process with stderr=subprocess.STDOUT, stdout and stderr will be
combined in this attribute, and stderr will be None. stderr

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

326 Intermediate Python
subprocess convenience functions

* run(), check_call() , check_output()

» Simpler to use than Popen
subprocess defines convenience functions, call(), check_call(), and check_output().

proc subprocess.run(cemd, ...)

Run command with arguments. Wait for command to complete, then return a CompletedProcess
instance.

subprocess.check_call(cemd, ...)

Run command with arguments. Wait for command to complete. If the exit code was zero then return,
otherwise raise CalledProcessError. The CalledProcessError object will have the return code in the
returncode attribute.

check_output(emd, ...)

Run command with arguments and return its output as a byte string. If the exit code was non-zero it
raises a CalledProcessError. The CalledProcessError object will have the return code in the returncode
attribute and output in the output attribute.

NOTE run() is only implemented in Python 3.5 and later.

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python 327

Example

subprocess_conv.py
#!/usr/bin/env python

import sys

from subprocess import check_call, check_output, CalledProcessError
from glob import glob

import shlex

if sys.platform == 'win32':
CMD = 'emd /c dir'
FILES = r'..\DATA\t*'

else:

CMD = "1s -1d'

FILES = '../DATA/t*'
cmd_words = shlex.split(CMD)
cmd_files = glob(FILES)

full_cmd = cmd_words + cmd_files

try:
check _call(full_cmd)
except CalledProcessError as err:
print("Command failed with return code", err.returncode)

print('-" * 60)

try:
output = check_output(full_cmd)
print("Output:", output.decode(), sep="\n")

except CalledProcessError as e:
print("Process failed with return code", e.returncode)

print('-" * 50)

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

328 Intermediate Python

subprocess_conv.py

-rw-r--r-- 1 jstrick staff 3178541 Nov 2 2020 ../DATA/tate_data.zip
-rwxr-xr-x 1 jstrick staff 297 Nov 17 2016 ../DATA/testscores.dat
-rwxr-xr-x 1 jstrick staff 2198 Feb 14 2016 ../DATA/textfiles.zip
-rw-r--r-- 1 jstrick staff 106960 Jul 26 2017 ../DATA/titanic3.csv
-rw-r--r--@ 1 jstrick staff 284160 Jul 26 2017 ../DATA/titanic3.xls
-rwxr-xr-x 1 jstrick staff 73808 Feb 14 2016 ../DATA/tolkien.txt
-rwxr-xr-x 1 jstrick staff 834 Feb 14 2016 ../DATA/tyger.txt
Output:

-rw-r--r-- 1 jstrick staff 3178541 Nov 2 2020 ../DATA/tate_data.zip
-rwxr-xr-x 1 jstrick staff 297 Nov 17 2016 ../DATA/testscores.dat
-rwxr-xr-x 1 jstrick staff 2198 Feb 14 2016 ../DATA/textfiles.zip
-rw-r--r-- 1 jstrick staff 106960 Jul 26 2017 ../DATA/titanic3.csv
-rw-r--r--@ 1 jstrick staff 284160 Jul 26 2017 ../DATA/titanic3.xls
-rwxr-xr-x 1 jstrick staff 73808 Feb 14 2016 ../DATA/tolkien.txt
-rwxr-xr-x 1 jstrick staff 834 Feb 14 2016 ../DATA/tyger.txt
NOTE showing Unix/Linux/Mac output - Windows will be similar

(Windows only) The following commands are internal to CMD.EXE, and must be preceded
by cmd /c or they will not work: ASSOC, BREAK, CALL ,CD/CHDIR, CLS, COLOR, COPY,
DATE, DEL, DIR, DPATH, ECHO, ENDLOCAL, ERASE, EXIT, FOR, FTYPE, GOTO, IF, KEYS,
MD/MKDIR, MKLINK (vista and above), MOVE, PATH, PAUSE, POPD, PROMPT, PUSHD,
REM, REN/RENAME, RD/RMDIR, SET, SETLOCAL, SHIFT, START, TIME, TITLE, TYPE, VER,
VERIFY, VOL

TIP

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python 329
Capturing stdout and stderr

* Add stdout, stderr args

* Assign subprocess.PIPE
To capture stdout and stderr with the subprocess module, import PIPE from subprocess and assign it
to the stdout and stderr parameters to run(), check_call(), or check_output(), as needed.

For check_output(), the return value is the standard output; for run(), you can access the stdout and
stderr attributes of the CompletedProcess instance returned by run().

NOTE output is returned as a bytes object; call decode() to turn it into a normal Python string.

Example

subprocess_capture.py
#!/usr/bin/env python

import sys

from subprocess import check_output, Popen, CalledProcessError, STDOUT, PIPE @
from glob import glob

import shlex

if sys.platform == 'win32':
CMD = 'emd /c dir'
FILES = r'..\DATA\t*'

else:

CMD = '"1s -1d'

FILES = '../DATA/t*'
cmd_words = shlex.split(CMD)
cmd_files = glob(FILES)

full_cmd = cmd_words + cmd_files

@
try:
output = check_output(full_cmd) @
print("Output:", output.decode(), sep="\n') @
except CalledProcessError as e:
print("Process failed with return code", e.returncode)

print('-" * 50)

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

330

try:
cmd = cmd_words + cmd_files + ['spam.txt']
proc = Popen(cmd, stdout=PIPE, stderr=STDOUT) ®
stdout, stderr = proc.communicate() @
print("Output:", stdout.decode())

except CalledProcessError as e:
print("Process failed with return code", e.returncode)

print('-" * 50)

try:
cmd = cmd_words + cmd_files + ['spam.txt']
proc = Popen(cmd, stdout=PIPE, stderr=PIPE) ©
stdout, stderr = proc.communicate() @
print("Output:", stdout.decode()) @
print("Error:", stderr.decode()) @
except CalledProcessError as e:
print("Process failed with return code", e.returncode)

print('-" * 50)

@ need to import PIPE and STDOUT

@ capture only stdout

® check_output() returns stdout

@ stdout is returned as bytes (decode to str)

® capture stdout and stderr together

Intermediate Python

® assign PIPE to stdout, so it is captured; assign STDOUT to stderr, so both are captured together

@ call communicate to get the input streams of the process; it returns two bytes objects representing

stdout and stderr
® decode the stdout object to a string
© assign PIPE to stdout and PIPE to stderr, so both are captured individually
now stdout and stderr each have data

@ decode from bytes and output

Chapter 10: Effective Scripts

© 2021 CJ Associates (rev1.0)

Output:

-TW-r--r--
-FWXT-XT-X
-TWXT -XT-X
-TW-r--r--

Intermediate Python

subprocess_capture.py

1 jstrick
1 jstrick
1 jstrick
1 jstrick

-rw-r--r--@ 1 jstrick

-TWXr-Xr-x
-TWXTI-Xr-X

1 jstrick
1 jstrick

2020 .
2016 .
2016 .
2017
2017 .
2016
2016 .

Output: -rw-r--r-- 1

- TWXT-XT-X
- FWXT-XT-X
-rW-r--r--

1 jstrick
1 jstrick
1 jstrick

-rw-r--r--@ 1 jstrick

- WX -XF-X
- WX -Xr-X
-[W-r=--r--

1 jstrick
1 jstrick
1 jstrick

17
14
26
26
14
14

3178541 Nov
2016 .

2016

2017 .

2017

2016 .
2016 .

11 11:26

Output: -rw-r--r-- 1

- TWXT-XT-X
- TWXT-XT-X
-rW-r--r--

1 jstrick
1 jstrick
1 jstrick

-rw-r--r--@ 1 jstrick

- TWXT-XT-X
- TWXT-XT-X
-rW-r--r--

1 jstrick
1 jstrick
1 jstrick

staff 3178541 Nov 2
staff 297 Nov 17
staff 2198 Feb 14
staff 106960 Jul 26
staff 284160 Jul 26
staff 73808 Feb 14
staff 834 Feb 14
jstrick staff
staff 297 Nov
staff 2198 Feb
staff 106960 Jul
staff 284160 Jul
staff 73808 Feb
staff 834 Feb
students 22 Nov
jstrick staff
staff 297 Nov
staff 2198 Feb
staff 106960 Jul
staff 284160 Jul
staff 73808 Feb
staff 834 Feb
students 22 Nov

17
14
26
26
14
14

3178541 Nov

2016

2016 .

2017
2017
2016
2016

© 2021 CJ Associates (rev1.0)

331

./DATA/tate_data.zip
./DATA/testscores.dat
./DATA/textfiles.zip
../DATA/titanic3.csv
./DATA/titanic3.x1s
../DATA/tolkien.txt
./DATA/tyger.txt

2 2020 ../DATA/tate_data.zip

./DATA/testscores.dat

../DATA/textfiles.zip

./DATA/titanic3.csv

../DATA/titanic3.x1s

spam. txt

./DATA/tolkien.txt
./DATA/tyger.txt

2 2020 ../DATA/tate_data.zip
../DATA/testscores.dat

./DATA/textfiles.zip

../DATA/titanic3.csv
../DATA/titanic3.x1s
../DATA/tolkien. txt
../DATA/tyger.txt

11 11:26 spam.txt

Chapter 10: Effective Scripts

332 Intermediate Python
Permissions

» Simplest is os.access()
* Get mode from os.Istat()

» Use binary AND with permission constants

Each entry in a Unix filesystem has a inode. The inode contains low-level information for the file,
directory, or other filesystem entity. Permissions are stored in the mode, which is a 16-bit unsigned
integer. The first 4 bits indicate what kind of entry it is, and the last 12 bits are the permissions.

To see if a file or directory is readable, writable, or executable use os.access(). To test for specific
permissions, use the os.Istat() method to return a tuple of inode data, and use the S_IMODE () method
to get the mode information as a number. Then use predefined constants such as stat.S_IRUSR,
stat.S_IWGRP, etc. to test for permissions.

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python 333

Example

file_access.py
#!/usr/bin/env python

import sys
import os

if len(sys.argv) < 2:
start_dir = "."

else:
start_dir = sys.argv[1]

for base _name in os.listdir(start_dir): @
file_name = os.path.join(start_dir, base_name)
if os.access(file name, os.W 0K): @
print(file_name, "is writable")

@ os.listdir() lists the contents of a directory

@ os.access() returns True if file has specified permissions (can be 0s.W_OK, 0s.R_OK, or 0s.X_OK,
combined with | (OR))

file_access.py ../DATA

../DATA/hyper.x1lsx is writable
../DATA/presidents.csv is writable
../DATA/Bicycle_Counts.csv is writable
../DATA/wetprf is writable
../DATA/uri-schemes-1.csv is writable
../DATA/presidents.html is writable
../DATA/presidents.x1lsx is writable
../DATA/pokemon_data.csv is writable
../DATA/presidents_plus_biden.txt is writable
../DATA/baby_names is writable

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

334 Intermediate Python
Using shutil

» Portable ways to copy, move, and delete files
* Create archives

» Misc utilities

The shutil module provides portable functions for copying, moving, renaming, and deleting files.
There are several variations of each command, depending on whether you need to copy all the
attributes of a file, for instance.

The module also provides an easy way to create a zip file or compressed tar archive of a folder.

In addition, there are some miscellaneous convenience routines.

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python 335

Example

shutil_ex.py

#!/usr/bin/env python
#

import shutil

import os

shutil.copy('../DATA/alice.txt', 'betsy.txt') @
print("betsy.txt exists:", os.path.exists('betsy.txt"))
shutil.move('betsy.txt', 'fred.txt') @
print("betsy.txt exists:", os.path.exists('betsy.txt'))
print("fred.txt exists:", os.path.exists('fred.txt"))

new_folder = 'remove_me'

os.mkdir(new_folder) ®
shutil.move('fred.txt', new_folder)

shutil.make_archive(new_folder, 'zip', new_folder) @

print("{}.zip exists:".format(new_folder), os.path.exists(new_folder + '.zip'))
print("{} exists:".format(new_folder), os.path.exists(new_folder))
shutil.rmtree(new_folder) ®

print("{} exists:".format(new_folder), os.path.exists(new_folder))

@ copy file

@ rename file

® create new folder

@ make a zip archive of new folder

® recursively remove folder

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

336 Intermediate Python

shutil _ex.py

betsy.txt exists: True
betsy.txt exists: False
fred.txt exists: True
remove_me.zip exists: True
remove_me exists: True
remove_me exists: False

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python 337
Creating a useful command line script

* More than just some lines of code

 Input + Business Logic + Output

Process files for input, or STDIN

» Allow options for customizing execution

Log results

A good system administration script is more than just some lines of code hacked together. It needs to
gather data, apply the appropriate business logic, and, if necessary, output the results of the business
logic to the desired destination.

Python has two tools in the standard library to help create professional command line scripts. One of
these is the argparse module, for parsing options and parameters on the script’s command line. The
other is fileinput, which simplifies processing a list of files specified on the command line.

We will also look at the logging module, which can be used in any application to output to a variety of
log destinations, including a plain file, syslog on Unix-like systems or the NTLog service on Windows,
or even email.

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

338 Intermediate Python

Creating filters
« Filter reads files or STDIN and writes to STDOUT

Common on Unix systems Well-known filters: awk, sed, grep, head, tail, cat Reads command line
arguments as files, otherwise STDIN use fileinput.input()

A common kind of script iterates over all lines in all files specified on the command line. The algorithm
is

for filename in sys.argv[1:]:
with open(filename) as F:
for line in F:
process line

Many Unix utilities are written to work this way - sed, grep, awk, head, tail, sort, and many more. They
are called filters, because they filter their input in some way and output the modified text. Such filters
read STDIN if no files are specified, so that they can be piped into.

The fileinput.input() class provides a shortcut for this kind of file processing. It implicitly loops through
sys.argv[1:], opening and closing each file as needed, and then loops through the lines of each file. If
sys.argv[1:] is empty, it reads sys.stdin. If a filename in the list is -, it also reads sys.stdin.

fileinput works on Windows as well as Unix and Unix-like platform:s.
To loop through a different list of files, pass an iterable object as the argument to fileinput.input(.

There are several methods that you can call from fileinput to get the name of the current file, e.g.

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python 339

Table 15. fileinput Methods

Method Description

filename() Name of current file being readable

lineno() Cumulative line number from all files read so far
filelineno() Line number of current file

isfirstline() True if current line is first line of a file

isstdin() True if current file is sys.stdin

close() Close fileinput

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

340 Intermediate Python

Example

file_input.py
#!/usr/bin/env python
import fileinput

for line in fileinput.input(): @
if 'bird' in line:
print('{}: {}'.format(fileinput.filename(), line), end=" ") @

@ fileinput.input() is a generator of all lines in all files in sys.argv[1:]

@ fileinput.filename() has the name of the current file

file_input.py ../DATA/parrot.txt ../DATA/alice.txt

../DATA/parrot.txt: At that point, the guy is so mad that he throws the bird into the
../DATA/parrot.txt: For the first few seconds there is a terrible din. The bird kicks
../DATA/parrot.txt: bird may be hurt. After a couple of minutes of silence, he's so
../DATA/parrot.txt: The bird calmly climbs onto the man's out-stretched arm and says,
../DATA/alice.txt: with the birds and animals that had fallen into it: there were a
../DATA/alice.txt: bank--the birds with draggled feathers, the animals with their
../DATA/alice.txt: some of the other birds tittered audibly.

../DATA/alice.txt: and confusion, as the large birds complained that they could not

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python 341
Parsing the command line

» Parse and analyze sys.argv

* Use argparse
o Parses entire command line
o Flexible

- Validates options and arguments

Many command line scripts need to accept options and arguments. In general, options control the
behavior of the script, while arguments provide input. Arguments are frequently file names, but can
be anything. All arguments are available in Python via sys.argv

There are at least three modules in the standard library to parse command line options. The oldest
module is getopt (earlier than v1.3), then optparse (introduced 2.3, now deprecated), and now,
argparse is the latest and greatest. (Note: argparse is only available in 2.7 and 3.0+).

To get started with argparse, create an ArgumentParser object. Then, for each option or argument, call
the parser’s add_argument() method.

The add_argument() method accepts the name of the option (e.g. -count) or the argument (e.g.
filename), plus named parameters to configure the option.

Once all arguments have been described, call the parser’s parse_args() method. (By default, it will
process sys.argv, but you can pass in any list or tuple instead.) parse_args() returns an object
containing the arguments. You can access the arguments using either the name of the argument or the
name specified with dest.

One useful feature of argparse is that it will convert command line arguments for you to the type
specified by the type parameter. You can write your own function to do the conversion, as well.

Another feature is that argparse will automatically create a help option, -h, for your application, using
the help strings provided with each option or parameter.

argparse parses the entire command line, not just arguments

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

342

Intermediate Python

Table 16. add_argument() named parameters

parameter
dest

nargs

const

default

type

choices
required
metavar

help

Example

Chapter 10: Effective Scripts

description
Name of attribute (defaults to argument name)

Number of arguments

Default: one argument, returns string
*. 0 or more arguments, returns list
+: 1 or more arguments, returns list
?: 0 or 1 arguments, returns list

N: exactly N arguments, returns list

Value for options that do not take a user-specified value
Value if option not specified

type which the command-line arguments should be converted ; one of
string, int, float, complex or a function that accepts a single string
argument and returns the desired object. (Default: string)

A list of valid choices for the option
Set to true for required options
A name to use in the help string (default: same as dest)

Help text for option or argument

© 2021 CJ Associates (rev1.0)

Intermediate Python 343

parsing_args.py

#!/usr/bin/env python

import re

import fileinput

import argparse

from glob import glob @

from itertools import chain @

arg_parser = argparse.ArqumentParser(description="Emulate grep with python") ®

arg_parser.add_argument(
l__il'
dest="1ignore_case', action="store_true',
help="ignore case'

) @

arg_parser.add_arqgument(
'pattern', help='Pattern to find (required)

) ®

arg_parser.add_arqument(

"filenames', nargs='*',

help="filename(s) (if no files specified, read STDIN)'
) ®

args = arg_parser.parse_args() @

print('-" * 40)
print(args)
print('-" * 40)

regex = re.compile(args.pattern, re.I if args.ignore_case else 0) ®

filename_gen = (glob(f) for f in args.filenames) @©
filenames = chain.from_iterable(filename_gen) @

for line in fileinput.input(filenames): @
if regex.search(line):
print(line.rstrip())

® needed on Windows to parse filename wildcards
@ needed on Windows to flatten list of filename lists
® create argument parser

@ add option to the parser; dest is name of option attribute

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

344 Intermediate Python

® add required argument to the parser

® add optional arguments to the parser

@ actually parse the arguments

compile the pattern for searching; set re IGNORECASE if -i option

© for each filename argument, expand any wildcards; this returns list of lists

flatten list of lists into a single list of files to process (note: both filename_gen and filenames are
generators; these two lines are only needed on Windows —non-Windows systems automatically
expand wildcards)

@ loop over list of file names and read them one line at a time
parsing_args.py

usage: parsing_args.py [-h] [-i] pattern [filenames [filenames ...]]
parsing_args.py: error: the following arguments are required: pattern, filenames

parsing_args.py -i |bbil ../DATA/alice.txt ../DATA/presidents.txt

Namespace(filenames=["../DATA/alice.txt', '../DATA/presidents.txt'], ignore_case=True,
pattern="\\bbil")
The Rabbit Sends in a Little Bill

Bill's got the other--Bill! fetch it here, lad!--Here, put 'em up
Here, Bill! catch hold of this rope--Will the roof bear?--Mind
crash)--"Now, who did that?--It was Bill, I fancy--Who's to go
then!--Bill's to go down--Here, Bill! the master says you're to

‘0h! So Bill's got to come down the chimney, has he?' said
Alice to herself. ‘Shy, they seem to put everything upon Bill!
I wouldn't be in Bill's place for a good deal: this fireplace is
above her: then, saying to herself ‘This is Bill,"' she gave one
Bill!"' then the Rabbit's voice along--‘Catch him, you by the

Last came a little feeble, squeaking voice, (‘That's Bill,'
The poor little Lizard, Bill, was in the middle, being held up by
end of the bill, "French, music, AND WASHING--extra."'
Bill, the Lizard) could not make out at all what had become of
Lizard as she spoke. (The unfortunate little Bill had left off
42:Clinton:William Jefferson 'Bill':1946-08-19:NONE:Hope:Arkansas:1993-01-20:2001-01-
20:Democratic

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python 345
parsing_args.py -h
usage: parsing_args.py [-h] [-i] pattern [filenames [filenames ...]]
Emulate grep with python
positional arguments:
pattern Pattern to find (required)
filenames filename(s) (if no files specified, read STDIN)
optional arguments:

-h, --help show this help message and exit
-i ignore case

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

346 Intermediate Python

Simple Logging

Specify file name

Configure the minimum logging level

» Messages added at different levels

Call methods on logging

For simple logging, just configure the log file name and minimum logging level with the basicConfig()
method. Then call one of the per-level methods, such as logging.debug or logging.error, to output a log
message for that level. If the message is at or above the minimal level, it will be added to the log file.

The file will continue to grow, and must be manually removed or truncated. If the file does not exist, it
will be created.

The logger module provides 5 levels of logging messages, from DEBUG to CRITICAL. When you set up a
logger, you specify the minimum level of messages to be logged. If you set up the logger with the
minimum level set to ERROR, then only messages at ERROR and CRITICAL levels will be logged. Setting
the minimum level to DEBUG allows all messages to be logged.

Table 17. Logging Levels

Level Value
CRITICAL 50
FATAL

ERROR 40
WARN 30
WARNING

INFO 20
DEBUG 10
UNSET 0

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python 347

Example

logging_simple.py
#!/usr/bin/env python
import logging

logging.basicConfig(
filename="../TEMP/simple.log’,
level=1ogging.WARNING,

) @

logging.warning('This is a warning') @
logging.debug('This message is for debugging') @
logging.error('This is an ERROR') @
logging.critical('This is ***CRITICAL***') ®
logging.info('The capital of North Dakota is Bismark') ®

@ setup logging; minimal level is WARN
@ message will be output

® message will NOT be output

@ message will be output

® message will be output

® message will not be output

simple.log
WARNING:root:This is a warning

ERROR:root:This is an ERROR
CRITICAL:root:This is ***CRITICAL***

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

348 Intermediate Python

Formatting log entries

Add format=format to basicConfig() parameters
» Format is a string containing directives and (optionally) other text
» Use directives in the form of %(item)type

e Other text is left as-is

To format log entries, provide a format parameter to the basicConfig() method. This format will be a
string contain special directives (i.e. Placeholders) and, optionally, other text. The directives are
replaced with logging information; other data is left as-is.

Directives are in the form %(item)type, where item is the data field, and type is the data type.

Example

logging formatted.py
#!/usr/bin/env python
import logging

logging.basicConfig(
format="%(name)s %(asctime)s %(levelname)s %(message)s', @®
filename="../TEMP/formatted.log",
level=1logging.INFO,

)

logging.info("this is information")
logging.warning("this is a warning")
logging.info("this is information")
logging.critical("this is critical")

@ set the format for log entries

formatted.log

root 2021-11-12 13:45:11,372 INFO this is information
root 2021-11-12 13:45:11,372 WARNING this is a warning
root 2021-11-12 13:45:11,372 INFO this is information
root 2021-11-12 13:45:11,373 CRITICAL this is critical

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python

349

Table 18. Log entry formatting directives

Directive
%(name)s

%/ (levelno)s

%(evelname)s

%(pathname)s

%(filename)s
%(module)s
%(lineno)d
%(funcName)s
%(created)f
%(asctime)s
%(msecs)d

%(relativeCreated)d

%/ (thread)d
% (threadName)s
%(process)d

%(message)s

© 2021 CJ Associates (rev1.0)

Description
Name of the logger (logging channel)

Numeric logging level for the message (DEBUG, INFO, WARNING,
ERROR, CRITICAL)

Text logging level for the message ("DEBUG", "INFO", "WARNING",
"ERROR", "CRITICAL")

Full pathname of the source file where the logging call was issued (if
available)

Filename portion of pathname

Module (name portion of filename)

Source line number where the logging call was issued (if available)
Function name

Time when the LogRecord was created (time.time() return value)
Textual time when the LogRecord was created

Millisecond portion of the creation time

Time in milliseconds when the LogRecord was created, relative to the
time the logging module was loaded (typically at application startup
time)

Thread ID (if available)
Thread name (if available)
Process ID (if available)

The result of record.getMessage(), computed just as the record is
emitted

Chapter 10: Effective Scripts

350 Intermediate Python

Logging exception information

* Use logging.exception()
» Adds exception info to message

* Only in except blocks

The logging.exception() function will add exception information to the log message. It should only be
called in an except block.

Example

logging exception.py
#!/usr/bin/env python
import logging

logging.basicConfig(@
filename="../TEMP/exception.log’,
level=1ogging.WARNING, @

)

for i in range(3):
try:
result = i/0
except ZeroDivisionError:
logging.exception('Logging with exception info') ®

@ configure logging
@ minimum level

® add exception info to the log

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python 351

exception.log

ERROR:root:Logging with exception info
Traceback (most recent call last):
File "logging_exception.py", line 12, in <module>
result = /0
ZeroDivisionError: division by zero
ERROR:root:Logging with exception info
Traceback (most recent call last):
File "logging_exception.py", line 12, in <module>
result = /0
ZeroDivisionError: division by zero
ERROR:root:Logging with exception info
Traceback (most recent call last):
File "logging_exception.py", line 12, in <module>
result = i/0
ZeroDivisionError: division by zero

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

352 Intermediate Python
Logging to other destinations

» Use specialized handlers to write to other destinations
* Multiple handlers can be added to one logger

o NTEventLogHandler for Windows event log

o SysLogHandler for syslog

o SMTPHandler for logging via email

The logging module provides some preconfigured log handlers to send log messages to destinations
other than a file.

Each handler has custom configuration appropriate to the destination. Multiple handlers can be added
to the same logger, so a log message will go to a file and to email, for instance, and each handler can
have its own minimum level. Thus, all messages could go to the message file, but only CRITICAL
messages would go to email.

Be sure to read the documentation for the particular log handler you want to use

On Windows, you must run the example script (logging.altdest.py) as administrator.
You can find Command Prompt (admin) on the main Windows 8/10 menu. You can also
right-click on Command Prompt from the Windows 7 menu and choose "Run as
administrator".

NOTE

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python 353

Example

logging_altdest.py

#!/usr/bin/env python
import sys

import logging

import logging.handlers

logger = logging.getlLogger('ThisApplication') @
logger.setlevel(logging.DEBUG) @

if sys.platform == 'win32"':
eventlog_handler = logging.handlers.NTEventLogHandler ("Python Log Test") &
logger.addHandler (eventlog_handler) @
else:
syslog_handler = logging.handlers.SyslLogHandler() ®
logger.addHandler (syslog_handler) ®

note -- use your own SMTP server...

email_handler = logging.handlers.SMTPHandler (
("smtpcorp.com', 8025),
'LOGGER@pythonclass.com',
['jstrickemindspring.com'],
'ThisApplication Log Entry",
("jstrickpython', 'python(monty)'),

) @

logger.addHandler (email_handler)
logger.debug('this is debug') ©

logger.critical('this is critical') ©
logger.warning('this is a warning') ©

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

354

@ get logger for application
@ minimum log level

® create NT event log handler
@ install NT event handler

® create syslog handler

® install syslog handler

@ create email handler

install email handler

@ goes to all handlers

Chapter 10: Effective Scripts

Intermediate Python

© 2021 CJ Associates (rev1.0)

Intermediate Python 355

Chapter 10 Exercises

Exercise 10-1 (copy_files.py)

Write a script to find all text files (only the files that end in ".txt") in the DATA folder of the student files
and copy them to C:\TEMP (Windows) or /tmp (non-windows). On Windows, create the C:\TEMP folder

if it does not already exist.

Add logging to the script, and log each filename at level INFO.

TIP use shutil.copy() to copy the files.

© 2021 CJ Associates (rev1.0) Chapter 10: Effective Scripts

356 Intermediate Python

Chapter 10: Effective Scripts © 2021 CJ Associates (rev1.0)

Intermediate Python

Chapter 11: Serializing Data

Objectives

Have a good understanding of the XML format
Know which modules are available to process XML
Use Ixml ElementTree to create a new XML file
Parse an existing XML file with ElementTree

Using XPath for searching XML nodes

Load JSON data from strings or files

Write JSON data to strings or files

Read and write CSV data

Read and write YAML data

© 2021 CJ Associates (rev1.0)

357

Chapter 11: Serializing Data

358 Intermediate Python
Which XML module to use?

* Bewildering array of XML modules
e Some are SAX, some are DOM

» Use xml.etree.ElementTree
When you are ready to process Python with XML, you turn to the standard library, only to find a
number of different modules with confusing names.

To cut to the chase, use Ixml.etree, which is based on ElementTree with some nice extra features,
such as pretty-printing. While not part of the core Python library, it is provided by the Anaconda
bundle.

If 1xml.etree is not available, you can use xml.etree.ElementTree from the core library.

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 359
Getting Started With ElementTree

* Import xml.etree.ElementTree (or Ixml.etree) as ET for convenience

* Parse XML or create empty ElementTree

ElementTree is part of the Python standard library; 1xml is included with the Anaconda distribution.

Since putting "xml.etree.ElementTree" in front of its methods requires a lot of extra typing, it is typical
to alias xml.etree.ElementTree to just ET when importing it: import xml.etree.ElementTree as ET

You can check the version of ElementTree via the VERSION attribute:

import xml.etree.ElementTree as ET
print(ET.VERSION)

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

360 Intermediate Python
How ElementTree Works

* ElementTree contains root Element

* Document is tree of Elements

In ElementTree, an XML document consists of a nested tree of Element objects. Each Element
corresponds to an XML tag.

An ElementTree object serves as a wrapper for reading or writing the XML text.

If you are parsing existing XML, use ElementTree.parse(); this creates the ElementTree wrapper and
the tree of Elements. You can then navigate to, or search for, Elements within the tree. You can also
insert and delete new elements.

If you are creating a new document from scratch, create a top-level (AKA "root") element, then create
child elements as needed.

element = root.find('sometag')

for subelement in element:
print(subelement.tagq)

print(element.get('someattribute'))

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 361
Elements

* Element has
o Tag name
o Attributes (implemented as a dictionary)
o Text
o Tail
o Child elements (implemented as a list) (if any)

» SubElement creates child of Element
When creating a new Element, you can initialize it with the tag name and any attributes. Once created,
you can add the text that will be contained within the element’s tags, or add other attributes.
When you are ready to save the XML into a file, initialize an ElementTree with the root element.

The Element class is a hybrid of list and dictionary. You access child elements by treating it as a list.
You access attributes by treating it as a dictionary. (But you can’t use subscripts for the attributes — you
must use the get() method).

The Element object also has several useful properties: tag is the element’s tag; text is the text
contained inside the element; tail is any text following the element, before the next element.

The SubElement class is a convenient way to add children to an existing Element.

TIP Only the tag property of an Element is required; other properties are optional.

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

362

Intermediate Python

Table 19. Element properties and methods

Property
append(element)
attrib

clear()

find(path)
findall(path)
findtext(path)
get(attr)
getiterator()
getiterator(path)
insert(pos,element)
items()

keys()
remove(element)
set(attrib,value)
tag

tail

text

Chapter 11: Serializing Data

Description

Add a subelement element to end of subelements
Dictionary of element’s attributes

Remove all subelements

Find first subelement matching path

Find all subelements matching path

Shortcut for find(path).text

Get an attribute; Shortcut for attrib.get()

Returns an iterator over all descendants

Returns an iterator over all descendants matching path
Insert subelement element at position pos

Get all attribute values; Shortcut for attrib.items()

Get all attribute names; Shortcut for attrib.keys()
Remove subelement element

Set an attribute value; shortcut for attr[attrib] = value
The element’s tag

Text following the element

Text contained within the element

© 2021 CJ Associates (rev1.0)

Intermediate Python 363

Table 20. ElementTree properties and methods

Property Description

find(path) Finds the first toplevel element with given tag; shortcut for
getroot().find(path).

findall(path) Finds all toplevel elements with the given tag; shortcut for

getroot().findall(path).

findtext(path) Finds element text for first toplevel element with given tag; shortcut
for getroot().findtext(path).

getiterator(path) Returns an iterator over all descendants of root node matching path.
(All nodes if path not specified)

getroot() Return the root node of the document

parse(filename) Parse an XML source (filename or file-like object)

parse(fileobj)

write(filename,encoding) Writes XML document to filename, using encoding (Default us-ascii).

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

364 Intermediate Python
Creating a New XML Document

* Create root element

Add descendants via SubElement

» Use keyword arguments for attributes

Add text after element created

Create ElementTree for import/export

To create a new XML document, first create the root (top-level) element. This will be a container for all
other elements in the tree. If your XML document contains books, for instance, the root document
might use the "books" tag. It would contain one or more "book" elements, each of which might contain
author, title, and ISBN elements.

Once the root element is created, use SubElement to add elements to the root element, and then nested
Elements as needed. SubElement returns the new element, so you can assign the contents of the tag to
the text attribute.

Once all the elements are in place, you can create an ElementTree object to contain the elements and
allow you to write out the XML text. From the ElementTree object, call write.

To output an XML string from your elements, call ET.tostring(), passing the root of the element tree as a
parameter. It will return a bytes object (pure ASCII), so use .decode() to convert it to a normal Python
string.

For an example of creating an XML document from a data file, see xml_create_knights.py in the
EXAMPLES folder

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 365

Example
xml_create_movies.py
#!/usr/bin/env python

from xml.etree import ElementTree as ET
import 1xml.etree as ET

movie data = [
("Jaws', 'Spielberg, Stephen'),
('Vertigo', 'Alfred Hitchcock'),
('Blazing Saddles', 'Brooks, Mel'),
('Princess Bride', 'Reiner, Rob'),
('Avatar', 'Cameron, James'),

]

movies = ET.Element('movies')
for name, director in movie_data:
movie = ET.SubElement(movies, 'movie', name=name)
ET.SubElement(movie, 'director').text = director
print(ET.tostring(movies, pretty_print=True).decode())

doc = ET.ElementTree(movies)

doc.write('movies.xml")

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

366 Intermediate Python

xml_create_movies.py

<movies>
<movie name="Jaws">
<director>Spielberg, Stephen</director>
</movie>
<movie name="Vertigo">
<director>Alfred Hitchcock</director>
</movie>
<movie name="Blazing Saddles">
<director>Brooks, Mel</director>
</movie>
<movie name="Princess Bride">
<director>Reiner, Rob</director>
</movie>
<movie name="Avatar">
<director>Cameron, James</director>
</movie>
</movies>

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 367
Parsing An XML Document

* Use ElementTree.parse()
 returns an ElementTree object

» Use get* or find* methods to select an element

Use the parse() method to parse an existing XML document. It returns an ElementTree object, from
which you can find the root, or any other element within the document.

To get the root element, use the getroot() method.

Example

import xml.etree.ElementTree as ET
doc = ET.parse('solar.xml")

root = doc.getroot()

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

368 Intermediate Python

Navigating the XML Document

e Use find() or findall()
» Element is iterable of it children

e findtext() retrieves text from element

To find the first child element with a given tag, use find(tag). This will return the first matching
element. The findtext(tag) method is the same, but returns the text within the tag.

To get all child elements with a given tag, use the findall(tag) method, which returns a list of elements.

to see whether a node was found, say
if node is None:

but to check for existence of child elements, say
if len(node) > 0:

A node with no children tests as false because it is an empty list, but it is not None.

The ElementTree object also supports the find() and findall() methods of the Element

TIP
object, searching from the root object.

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 369

Example

xml_planets_nav.py

#!/usr/bin/env python
"""Use etree navigation to extract planets from solar.xml
import 1xml.etree as ET

def main():
""'Program entry point
doc = ET.parse('../DATA/solar.xml') @

solar_system = doc.getroot() @

print(solar_system)
print()

inner = solar_system.find('innerplanets') ®
print('Inner:")

for planet in inner: @
if planet.tag == 'planet':
print('\t', planet.get("planetname", "NO NAME"))

outer = solar_system.find('outerplanets")
print('Outer:")

for planet in outer:
print('\t"', planet.get("planetname"))

plutoids = solar_system.find('dwarfplanets")
print('Dwarf:")

for planet in plutoids:
print('\t"', planet.get("planetname"))

if __name__ == ' main__
main()

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

370 Intermediate Python
xml_planets_nav.py

<Element solarsystem at @x7fb2b0@0caf00>

Inner:
Mercury
Venus
Earth
Mars

Quter:
Jupiter
Saturn
Uranus
Neptune

Dwarf:

Pluto

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 371

Example

xml_read_movies.py
#!/usr/bin/env python

import xml.etree.ElementTree as ET
import 1xml.etree as ET

movies_doc = ET.parse('movies.xml') @
movies = movies_doc.getroot() @

for movie in movies: ®
print('{} by {}'.format(
movie.get('name'), @
movie.findtext('director'), ®

@ read and parse the XML file

@ get the root element (<movies>)

® loop through children of root element
@ get name attribute of movie element

® get director attribute of movie element

xml_read_movies.py

Jaws by Spielberg, Stephen
Vertigo by Alfred Hitchcock
Blazing Saddles by Brooks, Mel
Princess Bride by Reiner, Rob
Avatar by Cameron, James

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

372 Intermediate Python
Using XPath

» Use simple XPath patterns Works with find* methods

When a simple tag is specified, the find* methods only search for subelements of the current element.
For more flexible searching, the find* methods work with simplified XPath patterns. To find all tags
named spam, for instance, use .//spam.

.//movie
presidents/president/name/last

Example

xml_planets_xpathl.py
#!/usr/bin/env python

import xml.etree.ElementTree as ET
import 1xml.etree as ET

doc = ET.parse('../DATA/solar.xml') @

doc.findall('innerplanets/planet') @

inner_nodes

doc.findall('outerplanets/planet') @

outer_nodes

print('Inner:")
for planet in inner_nodes: @
print('\t', planet.get("planetname")) ®

print('Outer:")

for planet in outer_nodes: @
print('\t', planet.get("planetname")) ®

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 373

@ parse XML file

@ find all elements (relative to root element) with tag "planet” under "innerplanets" element
® find all elements with tag "planet” under "outerplanets" element
@ loop through search results

® print "name" attribute of planet element

xml_planets_xpathl.py

Inner:
Mercury
Venus
Earth
Mars

Quter:
Jupiter
Saturn
Uranus
Neptune

Example
xml_planets_xpath2.py
#!/usr/bin/env python

import xml.etree.ElementTree as ET
import 1xml.etree as ET

doc = ET.parse('../DATA/solar.xml")
jupiter = doc.find('.//planet[@planetname="Jupiter"]")
if jupiter is not None:

for moon in jupiter:
print(moon.text) # grab attribute

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

374 Intermediate Python
xml_planets_xpath2.py

Metis
Adrastea
Amalthea
Thebe

Io
Europa
Gannymede
Callista
Themisto
Himalia
Lysithea
Elara

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 375

Table 21. ElementTree XPath Summary
Syntax Meaning

tag Selects all child elements with the given tag. For example, “spam” selects all child
elements named “spam”, “spam/egg” selects all grandchildren named “egg” in all
child elements named “spam”. You can use universal names (“{url}local”) as tags.

* Selects all child elements. For example, “*/egg” selects all grandchildren named
“egg”.
Select the current node. This is mostly useful at the beginning of a path, to
indicate that it’s a relative path.

/] Selects all subelements, on all levels beneath the current element (search the
entire subtree). For example, “.//egg” selects all “egg” elements in the entire tree.

Selects the parent element.

[@attrib] Selects all elements that have the given attribute. For example, “.//a[@href]”
selects all “a” elements in the tree that has a “href” attribute.

[@attrib="value’] Selects all elements for which the given attribute has the given value. For
example, “.//div[@class="sidebar’]” selects all “div” elements in the tree that has
the class “sidebar”. In the current release, the value cannot contain quotes.

parent_tag[child_ta Selects all parent elements that has a child element named child_tag. In the
gl current version, only a single tag can be used (i.e. only immediate children are
supported). Parent tag can be *.

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

376 Intermediate Python
About JSON

» Lightweight, human-friendly format for data
 Contains dictionaries and lists

+ Stands for JavaScript Object Notation

* Looks like Python

* Basic types: Number, String, Boolean, Array, Object
» White space is ignored

« Stricter rules than Python
JSON is a lightweight and human-friendly format for sharing or storing data. It was developed and
popularized by Douglas Crockford starting in 2001.
A JSON file contains objects and arrays, which correspond exactly to Python dictionaries and lists.
White space is ignored, so JSON may be formatted for readability.

Data types are Number, String, and Boolean. Strings are enclosed in double quotes (only); numbers
look like integers or floats; Booleans are represented by true or false; null (None in Python) is
represented by null.

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 377
Reading JSON

* json module in standard library
* json.load() parse from file-like object
* json.loads() parse from string

» Both methods return Python dict or list

To read a JSON file, import the json module. Use json.loads() to parse a string containing valid JSON.
Use json.load() to read JSON from a file-like objectO.

Both methods return a Python dictionary containing all the data from the JSON file.

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

378 Intermediate Python

Example

json_read.py
#!/usr/bin/env python
import json

with open('../DATA/solar.json") as solar_in: @
solar = json.load(solar_in) @

json.loads(STRING)
json.load(FILE_OBJECT)

print(solar)

print(solar['innerplanets']) ®

print('*" * 60)

print(solar['innerplanets'][0]["name'])

print('*" * 60)

for planet in solar['innerplanets'] + solar['outerplanets']:
print(planet['name'])

print("*" * 60)
for group in solar:
if group.endswith('planets'):
for planet in solar[group]:
print(planet['name'])

@ open JSON file for reading
@ load from file object and convert to Python data structure

® solar is just a Python dictionary

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 379

json_read.py

[{'name': 'Mercury', 'moons': None}, {'name': 'Venus', 'moons': None}, {'name': 'Earth',
'moons': ['Moon']}, {'name': 'Mars', 'moons': ['Deimos', 'Phobos']}]
kkhkhkkkkhhkhkhkkhhhhkhkhhhkhkhhhhhkhkhkhhhkhkhkkhhkhkhkkhhkhkikkkhkhkhkikkdhdhkikikk
Mercury
kkhkhkkkkhhkhkhkkhhkhkhkhhhkhkhkrhhhkhkhhhhhkhkhkhhhkhkhkhhhkhkirkkhkhkhkikkkhkhkikixk
Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

B R R o b o R b b b b b b o b b b b L S b b b b L P b b R L b b
Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

380 Intermediate Python

Writing JSON

* Use json.dumps() or json.dump()

To output JSON to a string, use json.dumps(). To output JSON to a file, pass a file-like object to
json.dump(). In both cases, pass a Python data structure as the data to be output.

Example

json_write.py
#!/usr/bin/env python
import json

george = [

"Lname': 'Washington',

"fname': 'George',

'dstart': [1789, 4, 30],

"dend': [1797, 3, 4],

'birthplace': 'Westmoreland County',
'birthstate': 'Virginia',

"dbirth': [1732, 2, 22],

"ddeath': [1799, 12, 14],
'assassinated': False,

"party': None,

b
{
"spam': 'ham',
'eggs': [1.2, 2.3, 3.4],
"toast': {'a': 5, 'm': 9, 'c': 4},
}
] @

js = json.dumps(george, indent=4) @
print(js)

with open('george.json', 'w') as george_out: ®
json.dump(george, george_out, indent=4) @

@ Python data structure

@ dump structure to JSON string

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 381

® open file for writing

@ dump structure to JSON file using open file object

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

382

json_write.py

[

"Iname": "Washington",
"fname": "George",

"dstart": [
1789,
4,
30

.

"dend": [
1797,
3,
4

1

"birthplace": "Westmoreland County",
"birthstate": "Virginia",

"dbirth": [
1732,
2,
22

.

"ddeath": [
1799,
12,
14

]

"party": null

"Spam": Ilham"'

"eggS“: [
1.

2,
2.3,

3.4
1,

"toast":

n a n :
m_n

m-:

G-

~

S O U1 A
<

Chapter 11: Serializing Data

I
ssassinated": false,

Intermediate Python

© 2021 CJ Associates (rev1.0)

Intermediate Python 383

Customizing JSON

* JSON data types limited
» simple cases —dump dict

 create custom encoders

The JSON spec only supports a limited number of datatypes. If you try to dump a data structure
contains dates, user-defined classes, or many other types, the json encoder will not be able to handle it.

You can a custom encoder for various data types. To do this, write a function that expects one Python
object, and returns some object that JSON can parse, such as a string or dictionary. The function can be
called anything. Specify the function with the default parameter to json.dump0).

The function should check the type of the object. If it is a type that needs special handling, return a
JSON-friendly version, otherwise just return the original object.

Table 22. Python types that J[SON

can encode
Python JSON
dict object
list array
str string
int number (int)
float number (real)
True true
False false
None null
NOTE see the file json_custom_singledispatch.py in EXAMPLES for how to use the

singledispatch decorator (in the functools module to handle multiple data types.

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

384 Intermediate Python

Example

json_custom_encoding.py

#!/usr/bin/env python

#

import json

from datetime import date

class Parrot(): @
def __init__(self, name, color):
self._name = name
self. color = color

@property
def name(self): @
return self._name

@property
def color(self):
return self. color

parrots = [@
Parrot('Polly', 'green'), #
Parrot('Peggy', 'blue'),
Parrot('Roger', 'red"),

def encode(obj): @
if isinstance(obj, date): ®
return obj.ctime() ®
elif isinstance(obj, Parrot): @
return {'name': obj.name, 'color': obj.color} ®
return obj ©

data = {
"spam': [1, 2, 3],
lhaml: (lal, lbl, ICI),
"toast': date(2014, 8, 1),
'parrots': parrots,

}

print(json.dumps(data, default=encode, indent=4)) @

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 385

@ sample user-defined class (not JSON-serializable)

@ JSON does not understand arbitrary properties

® list of Parrot objects

@ custom JSON encoder function

® check for date object

® convert date to string

@ check for Parrot object

convert Parrot to dictionary

@ if not processed, return object for JSON to parse with default parser
dictionary of arbitrary data

@ convert Python data to JSON data; default parameter specifies function for custom encoding; indent
parameter says to indent and add newlines for readability

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

386

json_custom_encoding.py

"name": "Polly",
"color": "green"

llnamell: "Peggy"’
"color": "blue"

"name": "Roger",

{

"spam": [
1,
2,
3

1

"ham": [
"a
"p
nen

1

"toast": "Fri Aug

"parrots": [
{
I
{
I
{

"color": "red"

}

]

}

Chapter 11: Serializing Data

1 00:00:00 2014",

Intermediate Python

© 2021 CJ Associates (rev1.0)

Intermediate Python 387
Reading and writing YAML

» yaml module from PYPI

syntax like json module

yaml.load(), dump() parse from/to file-like object

 yaml.loads(), dumps() parse from/to string
YAML is a structured data format which is a superset of JSON. However, YAML allows for a more
compact and readable format.
Reading and writing YAML uses the same syntax as JSON, other than using the yaml module, which is
NOT in the standard library. To install the yaml module:

pip install pyyaml

To read a YAML file (or string) into a Python data structure, use yaml.load(__file_object__) or
yaml.loads(__string__).

To write a data structure to a YAML file or string, use yaml.dump(__data__, __file_object__) or
yaml.dumps(__data__).

You can also write custom YAML processors.

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

388 Intermediate Python

NOTE YAML parsers will parse JSON data

Example
yaml_read_solar.py
import yaml
PLANET_SECTIONS = "inner outer plutoid".split()

with open('../DATA/solar.yaml') as solar_in:
solar_data = yaml.load(solar_in, Loader=yaml.FullLoader)

star = solar_data['star']
print("Our star is {}\n".format(star))

for section in PLANET_SECTIONS:
for planet in solar_data[section]:
print(planet['name'])
for moon in planet['moons']:
print("\t{}".format(moon))

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 389

yaml_read_solar.py
Our star is Sun

Mercury
None
Venus
None
Earth
Moon
Mars
Deimos
Phobos
Metis
Jupiter
Adrastea
Amalthea
Thebe
Io
Europa
Gannymede
Callista
Themisto
Himalia
Lysithea
Elara
Saturn
Rhea
Hyperion
Titan
Tapetus
Mimas

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

390 Intermediate Python

Example

yaml_create_file.py

import sys
from datetime import date
import yaml

potus = {
'presidents': [
{

'lastname': 'Washington',
"firstname': 'George',
'"dob': date(1732, 2, 22),
'"dod': date(1799, 12, 14),
'birthplace’: 'Westmoreland County',
'birthstate': 'Virginia',
"term': [date(1789, 4, 30), date(1797, 3, 4) 1,
'assassinated': False,
"party': None,

'lastname': 'Adams',

"firstname': 'John',

'"dob': date(1735, 10, 30),

'dod': date(1826, 7, 4),

"birthplace': 'Braintree, Norfolk',
'birthstate': 'Massachusetts',

"term': [date(1797, 3, 4), date(1801, 3, 4)],
'assassinated': False,

"party': 'Federalist',

}

with open('potus.yaml', 'w') as potus_out:
yaml.dump(potus, potus_out)

yaml.dump(potus, sys.stdout)

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 391

yaml_create._file.py

presidents:

- assassinated: false
birthplace: Westmoreland County
birthstate: Virginia
dob: 1732-02-22
dod: 1799-12-14
firstname: George
lastname: Washington
party: null
term:

- 1789-04-30
- 1797-03-04

- assassinated: false
birthplace: Braintree, Norfolk
birthstate: Massachusetts
dob: 1735-10-30
dod: 1826-07-04
firstname: John
lastname: Adams
party: Federalist
term:

- 1797-03-04
- 1801-03-04

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

392 Intermediate Python
Reading CSV data

e Use csv module
* Create a reader with any iterable (e.g. file object)
* Understands Excel CSV and tab-delimited files

* Can specify alternate configuration

Iterate through reader to get rows as lists of columns

To read CSV data, use the reader() method in the csv module.

To create a reader with the default settings, use the reader() constructor. Pass in an iterable — typically,
but not necessarily, a file object.

You can also add parameters to control the type of quoting, or the output delimiters.

Example

csv_read.py

#!/usr/bin/env python
import csv

with open('../DATA/knights.csv') as knights_in:
rdr = csv.reader(knights_in) @
for name, title, color, quest, comment, number, ladies in rdr: @
print('{:4s} {:9s} {}'.format(
title, name, quest

)

@ create CSV reader

@ Read and unpack records one at a time; each record is a list

csv_read.py

King Arthur The Grail
Sir Lancelot The Grail
Sir Robin Not Sure
Sir Bedevere The Grail
Sir Gawain The Grail

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 393
Nonstandard CSV

e Variations in how CSV data is written
» Most common alternate is for Excel

* Add parameters to reader/writer

You can customize how the CSV parser and generator work by passing extra parameters to csv.reader()
or csv.writer(). You can change the field and row delimiters, the escape character, and for output, what
level of quoting.

You can also create a "dialect”, which is a custom set of CSV parameters. The csv module includes one
extra dialect, excel, which handles CSV files generated by Microsoft Excel. To use it, specify the dialect
parameter:

rdr = csv.reader(csvfile, dialect="excel'")

Table 23. CSV reader()/writer() Parameters

Parameter Meaning

quotechar One-character string to use as quoting character (default: ")

delimiter One-character string to use as field separator (default:,)

skipinitialspace If True, skip white space after field separator (default: False)
lineterminator The character sequence which terminates rows (default: depends on OS)
quoting When should quotes be generated when writing CSV

csv.QUOTE_MINIMAL - only when needed (default)
csv.QUOTE_ALL - quote all fields

csv.QUOTE_NONNUMERIC - quote all fields that are not numbers
csv.QUOTE_NONE - never put quotes around fields

escapechar One-character string to escape delimiter when quoting is set to csv.QUOTE_NONE

doublequote Control quote handling inside fields. When True, two consecutive quotes are read
as one, and one quote is written as two. (default: True)

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

394 Intermediate Python

Example

csv_nonstandard.py

#!/usr/bin/env python
import csv

with open('../DATA/computer_people.txt') as computer_people_in:
rdr = csv.reader(computer_people_in, delimiter=";') @

for first_name, last_name, known_for, birth_date in rdr: @
print('{}: {}'.format(last_name, known_for))

@ specify alternate field delimiter

@ iterate over rows of data — csv reader is a generator

csv_nonstandard.py

Gates: Gates Foundation
Jobs: Apple

Wall: Perl

Allen: Microsoft
Ellison: Oracle

Gates: Microsoft
Zuckerberg: Facebook
Brin: Google

Page: Google

Torvalds: Linux

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 395
Using csv.DictReader

* Returns each row as dictionary
» Keys are field names

» Use header or specify

Instead of the normal reader, you can create a dictionary-based reader by using the DictReader class.

If the CSV file has a header, it will parse the header line and use it as the field names. Otherwise, you
can specify a list of field names with the fieldnames parameter. For each row, you can look up a field
by name, rather than position.

Example

csv_dictreader.py

#!/usr/bin/env python
import csv

field_names = ['term', 'firstname', 'lastname', 'birthplace', 'state', 'party'] @®

with open('../DATA/presidents.csv') as presidents_in:
rdr = csv.DictReader(presidents_in, fieldnames=field_names) @
for row in rdr: ®
print('{:25s} {:12s} {}'.format(row['firstname'], row['lastname'], row['party']))

string .format can use keywords from an unpacked dict as well:
print('{firstname:25s} {lastname:12s} {party}'.format(**row))

@ field names, which will become dictionary keys on each row
@ create reader, passing in field names (if not specified, uses first row as field names)
® iterate over rows in file

@ print results with formatting

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

396 Intermediate Python

csv_dictreader.py

George Washington no party

John Adams Federalist

Thomas Jefferson Democratic - Republican
James Madison Democratic - Republican
James Monroe Democratic - Republican
John Quincy Adams Democratic - Republican
Andrew Jackson Democratic

Martin Van Buren Democratic

William Henry Harrison Whig

John Tyler Whig

James Knox Polk Democratic

Zachary Taylor Whig

Millard Fillmore Whig

Franklin Pierce Democratic

James Buchanan Democratic

Abraham Lincoln Republican

Andrew Johnson Republican

Ulysses Simpson Grant Republican

Rutherford Birchard Hayes Republican

James Abram Garfield Republican

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 397
Writing CSV Data

» Use csv.writer()
» Parameter is file-like object (must implement write() method)
 Can specify parameters to writer constructor

» Use writerow() or writerows() to output CSV data

To output data in CSV format, first create a writer using csv.writer(). Pass in a file-like object.

For each row to write, call the writerow() method of the writer, passing in an iterable with the values
for that row.

To modify how data is written out, pass parameters to the writer.

On Windows, to prevent double-spaced output, add lineterminator="\n' when creating a

TIP .
CSV writer.

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

398 Intermediate Python

Example

csv_write.py

#!/usr/bin/env python
import sys
import csv

chicago_data = [
['Name', 'Position Title', 'Department', 'Employee Annual Salary'],
['BONADUCE, MICHAEL J', 'POLICE OFFICER', 'POLICE', '$80724.00'],
['MELLON, MATTHEW J "Matt"', 'POLICE OFFICER', 'POLICE', '$75372.00'],
['"FIERI, JOHN J', 'FIREFIGHTER-EMT', 'FIRE', '$75342.00'],
['GALAHAD, MERLE S', 'CLERK III', 'BUSINESS AFFAIRS', '$45828.00'],
["ORCATTI, JENNIFER L', 'FIRE COMMUNICATIONS OPERATOR I', 'OEMC', '$63121.68'],
['ASHE, JOHN W', 'FOREMAN OF MACHINISTS', 'AVIATION', '$96553.60'],
['SADINSKY BLAKE, MICHAEL G', 'POLICE OFFICER', 'POLICE', '$78012.00'],
["GRANT, CRAIG A', 'SANITATION LABORER', 'STREETS & SAN', '$69576.00'],
['MILLER, JONATHAN D', 'POLICE OFFICER', 'POLICE', '$75372.00'],
["FRANK, ARTHUR R',
"POLICE OFFICER/EXPLSV DETECT, K9 HNDLR',
"POLICE',
'$87918.00'1,
['POVOTTI, JAMES S "Jimmy P"', 'TRAFFIC CONTROL AIDE-HOURLY', 'OEMC', '$19167.20'],
['TRAWLER, DANIEL J', "POLICE OFFICER', 'POLICE', '$75372.00'],
['SCUBA, ANDREW G', 'POLICE OFFICER', 'POLICE', '$75372.00'],
["SWINE, MATTHEW W', 'SERGEANT', 'POLICE', '$99756.00'],
['''RYDER, MYRTA T "Lil'Myrt"''', 'POLICE OFFICER', 'POLICE', '$83706.00'],
['KORSHAK, ROMAN', 'PARAMEDIC', 'FIRE', '$75372.00']

]

with open('../TEMP/chi_data.csv', 'w') as chi_out:

if sys.platform == 'win32':

wtr = csv.writer(chi_out, lineterminator="\n') @®

else:

wtr = csv.writer(stuff_in) @

for data_row in chicago_data:
data_row[-1] = data_row[-1].1strip('$"') # strip leading § from last field
wtr.writerow(data_row) @

@ create CSV writer from file object that is opened for writing; on windows, need to set output line
terminator to [n

@ write one row (of iterables) to output file

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 399
Pickle

* Use the pickle module
* Create a binary stream that can be saved to file

e Can also be transmitted over the network

Python uses the pickle module for data serialization.

To create pickled data, use either pickle.dump() or pickle.dumps(). Both functions take a data structure
as the first argument. dumps() returns the pickled data as a string. dump () writes the data to a file-like
object which has been specified as the second argument. The file-like object must be opened for
writing.

To read pickled data, use pickle.load(), which takes a file-like object that has been open for writing, or
pickle.loads() which reads from a string. Both functions return the original data structure that had
been pickled.

NOTE The syntax of the json module is based on the pickle module.

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

400 Intermediate Python

Example
pickling.py

#!/usr/bin/env python
import pickle
from pprint import pprint

@

airports = {
'RDU": 'Raleigh-Durham', "IAD': 'Dulles', 'MGW': 'Morgantown',
"EWR': 'Newark', 'LAX': 'Los Angeles', 'ORD': 'Chicago’

}
colors = [
'red', 'blue', 'green', 'yellow', 'black',
'white', 'orange', 'brown', 'purple’
]
data=[@
colors,
airports,
]

with open('../TEMP/pickled_data.pic', 'wb') as pic_out: ®
pickle.dump(data, pic_out) @

with open('../TEMP/pickled_data.pic', 'rb") as pic_in: ®
pickled_data = pickle.load(pic_in) ®

pprint(pickled_data) @

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python 401

@ some data structures

@ list of data structures

® open pickle file for writing in binary mode

@ serialize data structures to pickle file

® open pickle file for reading in binary mode

® de-serialize pickle file back into data structures

@ view data structures
pickling.py

[['red',
"blue',
'green’,
"vellow',
'black’,
'"white',
‘orange’,
"brown',
"purple'],

{"EWR": 'Newark',
"TAD": 'Dulles’,
"LAX": 'Los Angeles',
"MGW': 'Morgantown',
"ORD': 'Chicago',
'RDU": 'Raleigh-Durham'}]

© 2021 CJ Associates (rev1.0) Chapter 11: Serializing Data

402 Intermediate Python

Chapter 11 Exercises

Exercise 11-1 (xwords.py)

Using ElementTree, create a new XML file containing all the words that start with x from words.txt.
The root tag should be named words, and each word should be contained in a word tag. The finished
file should look like this:

<words>
<word>xanthan</word>
<word>xanthans</words>
and so forth

</words>

Exercise 11-2 (xpresidents.py)

Use ElementTree to parse presidents.xml. Loop through and print out each president’s first and last
names and their state of birth.

Exercise 11-3 (jpresidents.py)

Rewrite xpresidents.py to parse presidents.json using the json module.

Exercise 11-4 (cpresidents.py)

Rewrite xpresidents.py to parse presidents.csv using the csv module.

Exercise 11-5 (pickle_potus.py)

Write a script which reads the data from presidents.csv into an dictionary where the key is the term
number, and the value is another dictionary of data for one president.

Using the pickle module, Write the entire dictionary out to a file named presidents.pic.

Exercise 11-6 (unpickle_potus.py)
Write a script to open presidents.pic, and restore the data back into a dictionary.

Then loop through the array and print out each president’s first name, last name, and party.

Chapter 11: Serializing Data © 2021 CJ Associates (rev1.0)

Intermediate Python

Appendix A: Python Bibliography

Title
Data Science

Building machine learning
systems with Python

High Performance Python

Introduction to Machine
Learning with Python

iPython Interactive Computing

and Visualization Cookbook

Learning iPython for Interactive

Computing and Visualization

Learning Pandas

Learning scikit-learn: Machine

Learning in Python

Mastering Machine Learning
with Scikit-learn

Matplotlib for Python Developers

Numpy Beginner’s Guide

Numpy Cookbook

Practical Data Science Cookbook

Python Text Processing with
NLTK 2.0 Cookbook

Scikit-learn cookbook

Python Data Visualization
Cookbook

Python for Data Analysis
Design Patterns

Design Patterns: Elements of
Reusable Object-Oriented
Software

© 2021 CJ Associates (rev1.0)

Author

William Richert, Luis Pedro
Coelho

Mischa Gorlelick and Ian
Ozsvald

Sarah Guido

Cyril Rossant

Cyril Rossant

Michael Heydt

Raul Garreta, Guillermo
Moncecchi

Gavin Hackeling

Sandro Tosi
Ivan Idris
Ivan Idris

Tony Ojeda, Sean Patrick
Murphy, Benjamin Bengfort,
Abhijit Dasgupta

Jacob Perkins

Trent Hauck

Igor Milovanovic

Wes McKinney

Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides

Publisher

Packt Publishing

O’Reilly Media

O’Reilly & Assoc.

Packt Publishing

Packt Publishing

Packt Publishing
Packt Publishing

Packt Publishing

Packt Publishing
Packt Publishing
Packt Publishing
Packt Publishing

Packt Publishing

Packt Publishing
Packt Publishing

O’Reilly & Assoc.

Addison-Wesley Professional

403

Appendix A: Python Bibliography

404

Title

Head First Design Patterns

Learning Python Design Patterns

Mastering Python Design
Patterns

General Python development
Expert Python Programming
Fluent Python

Learning Python, 2nd Ed.

Mastering Object-oriented
Python

Programming Python, 2nd Ed.

Python 3 Object Oriented
Programming

Python Cookbook, 3nd. Ed.

Python Essential Reference, 4th.
Ed.

Python in a Nutshell
Python Programming on Win32

The Python Standard Library By
Example

Misc
Python Geospatial Development

Python High Performance
Programming

Networking

Python Network Programming
Cookbook

Violent Python: A Cookbook for
Hackers, Forensic Analysts,
Penetration Testers and Security
Engineers

Web Scraping with Python

Testing

Appendix A: Python Bibliography

Author

Eric Freeman, Elisabeth Robson,

Bert Bates, Kathy Sierra
Gennadiy Zlobin

Sakis Kasampalis

Tarek Ziadé
Luciano Ramalho
Mark Lutz, David Asher

Stephen F. Lott

Mark Lutz

Dusty Phillips

David Beazley, Brian K. Jones

David M. Beazley

Alex Martelli

Mark Hammond, Andy Robinson

Doug Hellmann

Erik Westra

Gabriele Lanaro

Dr. M. O. Faruque Sarker

T J O’Connor

Ryan Mitchell

Intermediate Python

Publisher
O’Reilly Media

Packt Publishing
Packt Publishing

Packt Publishing
O’Reilly & Assoc.
O’Reilly & Assoc.
Packt Publishing

O’Reilly & Assoc.
Packt Publishing

O’Reilly & Assoc.

Addison-Wesley Professional

O’Reilly & Assoc.
O’Reilly & Assoc.

Addison-Wesley Professional

Packt Publishing
Packt Publishing

Packt Publishing

Syngress

O’Reilly & Assoc.

© 2021 CJ Associates (rev1.0)

Intermediate Python

Title
Python Testing Cookbook

Learning Python Testing

Learning Selenium Testing Tools,

3rd Ed.
Web Development

Building Web Applications with
Flask

Django 1.0 Website Development

Django 1.1 Testing and
Development

Django By Example

Django Design Patterns and Best
Practices

Django Essentials

Django Project Blueprints
Flask Blueprints

Flask by Example

Flask Framework Cookbook
Flask Web Development

Full Stack Python (e-book only)

Full Stack Python Guide to
Deployments (e-book only)

High Performance Django
Instant Flask Web Development

Learning Flask Framework

Mastering Flask

Two Scoops of Django: Best
Practices for Django 1.11

Web Development with Django
Cookbook

© 2021 CJ Associates (rev1.0)

Author

Greg L. Turnquist
Daniel Arbuckle
Raghavendra Prasad MG

Italo Maia

Ayman Hourieh

Karen M. Tracey

Antonio Melé

Arun Ravindran

Samuel Dauzon
Asad Jibran Ahmed
Joel Perras

Gareth Dwyer
Shalabh Aggarwal
Miguel Grinberg
Matt Makai

Matt Makai

Peter Baumgartner, Yann Malet
Ron DuPlain

Matt Copperwaite, Charles O
Leifer

Jack Stouffer

Daniel Roy Greenfeld, Audrey
Roy Greenfeld

Aidas Bendoraitis

Publisher

Packt Publishing
Packt Publishing
Packt Publishing

Packt Publishing

Packt Publishing
Packt Publishing

Packt Publishing
Packt Publishing

Packt Publishing
Packt Publishing
Packt Publishing
Packt Publishing
Packt Publishing
O’Reilly & Assoc.

Gumroad (or free download)

Gumroad (or free download)

Lincoln Loop
Packt Publishing
Packt Publishing

Packt Publishing

Two Scoops Press

Packt Publishing

405

Appendix A: Python Bibliography

406 Intermediate Python

Appendix A: Python Bibliography © 2021 CJ Associates (rev1.0)

Intermediate Python

Index

@

@pytest.mark.mark, 203
call(156

init (, 156

__init__.py, 73

__new_ (,156
__prepare__(, 156
__pycache__, 60

0od, 224, 227, 231, 236

A

abstract base classes, 103
Anaconda, 359

API, 222

argparse, 341

assert, 186

assertions, 185

asynchronous communication, 260

asyncio, 285
attributes, 123
autocommit, 249

B

benchmarking, 179
binary mode, 295

C

callable, 132
Cassandra, 252
class
defining at runtime, 148
class data, 92
class method, 93
classes, 80
constructors, 86
defining, 81
inheritance, 95
collection vs generator, 33
command line scripts, 337
comments, 167
cominit, 249
conftest.py, 197

© 2021 CJ Associates (rev1.0)

407

connection object, 226
constructors, 86
context manager, 224
creating Unix-style filters, 338
CSV, 392

nonstandard, 393
csv

DictReader, 395
csv.reader(), 392
csv.writer(, 397
cursor, 226
cursor object, 226
cursor.description, 245
cx_oracle, 223

D

database programming, 222
database server, 224
DB AP, 222
debugger
setting breakpoints, 176
starting, 174
stepping through a program, 175
decorator class, 141
decorator function, 138
decorator parameters, 145
decorators, 132
decorators in the standard library, 133
delattr(), 123
dictionary comprehension, 31
dictionary cursor, 241
emulating, 247
Django, 197, 251
Django framework, 156
Django ORM, 251
Douglas Crockford, 376

E

Element, 360-361

ElementTree, 359
find(), 368
findall(), 368

Index

408

email
attachments, 306
sending, 303
email.mime, 306
exception, 188

executing SQL statements, 227

F
fetch methods, 228

Firebird (and Interbase, 223

fixtures, 184, 190
function parameters, 49
named, 49
optional, 49
positional, 49
required, 49
functions, 46
functools, 383
functools.wraps, 138

G

generator expression, 34
GET, 288

getattr(), 123

getroot(, 367

getter methods, 87

GIL, 262

glob, 322

global, 58

globals(), 117

grabbing a web page, 295
Graphviz, 172

H

hasattr(), 123
hooks, 197
HTTP verbs, 288

I

IBM DB2, 223
ibm-db, 223
import * 65
import {star}, 64
in operator, 33
Informix, 223

Index

informixdb, 223
ingmod, 223
Ingres, 223
inheritance, 95
multiple, 100
inspect module, 120
instance attributes, 83
instance methods, 85

]
Java, 185
JSON, 376

Intermediate Python

custom encoding, 383

types, 376
json module, 377
json.dumps(, 380
json.loads(, 377

K
KiInterbasDB, 223

L

lambda function, 27
list comprehension, 29
locals(), 117

logging

alternate destinations, 352

exceptions, 350

formatted, 348

simple, 346
Ixml

Element, 361

SubElement, 361
Ixml.etree, 358

M

markers, 185
metaclass, 155-156
metaclasses, 154
metadata, 245
metaprogramming, 116
Microsoft SQL Server, 2
mock object, 210
modules, 59
documenting, 75

23

© 2021 CJ Associates (rev1.0)

Intermediate Python

executing as scripts, 67

importing, 60

search path, 66
MongoDB, 252
monkey patches, 151
multiprocessing, 260, 280

Manager, 276
multiprocessing module, 276
multiprocessing.dummy, 280
multiprocessing.dummy.Pool, 280
multiprocessing.Pool, 280
multiprogramming, 260

alternatives to, 285
MySQL, 223

N

namedtuple cursor, 247
node ID, 206

non-query statement, 236
non-relational, 252
nonlocal, 58

NoSQL, 252

(0)

object instance, 82
Object-relational mapper, 251
ODBC, 223

Oracle, 223

ORM, 251

P

packages, 69
configuring, 73
parameterized SQL statements, 236
parametrizing, 200
paramiko, 310
exec_command(), 312
interactive, 318
parsing the command line, 342
PEP 20, 10
PEP 8, 76
permissions, 332
checking, 332
placeholder, 236
plugins, 197

© 2021 CJ Associates (rev1.0)

Popen, 325
POST, 288
PostgreSQL, 223

preconfigured log handlers, 352

profiler, 177
properties, 88
psycopg2, 223
PUT, 288
py.-test, 187
pycallgraph, 178
PyCharm, 187
pychecker, 168
pyflakes, 168
pylint, 168
customizing, 169
pymock, 210
pymssql, 223
pymysql, 223
pyodbc, 223
pyreverse, 170
pytest, 185-186
builtin fixtures, 193

configuring fixtures, 197

output capture, 187

special assertions, 188
user-defined fixtures, 191

verbose, 187
pytest-django, 217
pytest-mock, 211
pytest-qt, 217
pytest.approx(), 188
pytest.fixture, 191
pytest.raises(), 188
python debugger, 173
python style, 76
PYTHONPATH, 66

R

Redis, 252

redis, 197

remote access, 310

requests, 288
methods

keyword parameters, 293

409

Index

410

Response
attributes, 294
rollback, 249
running tests, 206
by component, 206
by mark, 206
by name, 206

S

SAP DB, 223
sapdbapi, 223
scope
builtin, 56
global, 56
nonlocal, 56
sendmail(, 303
set comprehension, 32
setattr(), 123
setter methods, 87
SFTP, 315
shlex.split(), 324
shutil, 334
singledispatch, 383
smtplib, 303
sorted(), 22
sorting
custom key, 24
special methods, 106
SQL code, 226
SQL data integrity, 249
SQL injection, 234
SQL queries, 227
SQLAlIchemy, 251
SQLite, 223
sqlite3, 223
SSH protocol, 310
static method, 112
SubElement, 361
subprocess, 325-326
capturing stdout/stderr, 329
check _call(), 326
check_output(), 326
run(), 326
super(, 96

Index

Intermediate Python

super(), 99
Sybase, 223
sys.path, 66

T

test case, 184
test cases, 184
test runner, 185, 187
test runners, 184
tests
messages, 186
thread, 261
thread class
creating, 266
threading, 260
threading module, 263
threading.Thread, 263
threads
debugging, 275
locks, 268
queue, 271
simple, 264
variable sharing, 268
Tim Peters, 10
timeit, 179
timsort, 10
tolerance
pytest.approx, 188
transactions, 249
tuple, 11
Twisted, 285
type, 155
type(), 148

U

unit test, 184
unit test components, 184
unit tests
failing, 207
mock objects, 211
running, 187
skipping, 207
unittest.mock, 210-211
unpacking function parameters, 17
urllib.parse.urlencode(, 300

© 2021 CJ Associates (rev1.0)

Intermediate Python 411

urllib.request, 295, 300
urllib.request.Request, 300
urlopen(), 295

A%

variable scope, 56

A\

web services
consuming, 300

X

xfail, 207
XML, 358

root element, 364
xml.etree.ElementTree, 358-359
XPASS, 207
XPath, 372
xUnit, 185

Y
yield, 34

Z
Zen of Python, 10

© 2021 CJ Associates (rev1.0) Index

	Intermediate Python
	Table of Contents
	About this course
	Welcome!
	Classroom etiquette for in-person learning
	Classroom etiquette for remote learning
	Course Outline
	Student files
	Extracting the student files
	Examples
	Lab Exercises
	Appendices

	Chapter 1: Pythonic Programming
	The Zen of Python
	Tuples
	Iterable unpacking
	Extended iterable unpacking
	Unpacking function arguments
	The sorted() function
	Custom sort keys
	Lambda functions
	List comprehensions
	Dictionary comprehensions
	Set comprehensions
	Iterables
	Generator Expressions
	Generator functions
	String formatting
	f-strings

	Chapter 2: Functions Modules Packages
	Functions
	Function parameters
	Default parameters
	Python Function parameter behavior (from PEP 3102)
	Name resolution (AKA Scope)
	The global statement
	Modules
	Using import
	How import * can be dangerous
	Module search path
	Executing modules as scripts
	Packages
	Configuring import with __init__.py
	Documenting modules and packages
	Python style

	Chapter 3: Intermediate Classes
	What is a class?
	Defining Classes
	Object Instances
	Instance attributes
	Instance Methods
	Constructors
	Getters and setters
	Properties
	Class Data
	Class Methods
	Inheritance
	Using super()
	Multiple Inheritance
	Abstract base classes
	Special Methods
	Static Methods

	Chapter 4: Metaprogramming
	Metaprogramming
	globals() and locals()
	The inspect module
	Working with attributes
	Adding instance methods
	Callable classes
	Decorators
	Applying decorators
	Trivial Decorator
	Decorator functions
	Decorator Classes
	Decorator parameters
	Creating classes at runtime
	Monkey Patching
	Do you need a Metaclass?
	About metaclasses
	Mechanics of a metaclass
	Singleton with a metaclass

	Chapter 5: Developer Tools
	Program development
	Comments
	pylint
	Customizing pylint
	Using pyreverse
	The Python debugger
	Starting debug mode
	Stepping through a program
	Setting breakpoints
	Profiling
	Benchmarking

	Chapter 6: Unit Testing with pytest
	What is a unit test?
	The pytest module
	Creating tests
	Running tests (basics)
	Special assertions
	Fixtures
	User-defined fixtures
	Builtin fixtures
	Configuring fixtures
	Parametrizing tests
	Marking tests
	Running tests (advanced)
	Skipping and failing
	Mocking data
	pymock objects
	Pytest plugins
	Pytest and Unittest

	Chapter 7: Database Access
	The DB API
	Connecting to a Server
	Creating a Cursor
	Executing a query statement
	Fetching Data
	Non-query statements
	SQL Injection
	Parameterized Statements
	Dictionary Cursors
	Metadata
	Generic alternate cursors
	Transactions
	Object-relational Mappers
	NoSQL

	Chapter 8: Multiprogramming
	Multiprogramming
	What Are Threads?
	The Python Thread Manager
	The threading Module
	Threads for the impatient
	Creating a thread class
	Variable sharing
	Using queues
	Debugging threaded Programs
	The multiprocessing module
	Using pools
	Alternatives to multiprogramming

	Chapter 9: Network Programming
	Making HTTP requests
	Grabbing a web page the hard way
	Consuming Web services the hard way
	sending e-mail
	Email attachments
	Remote Access
	Auto-adding hosts
	Remote commands
	Copying files with SFTP
	Interactive remote access

	Chapter 10: Effective Scripts
	Using glob
	Using shlex.split()
	The subprocess module
	subprocess convenience functions
	Capturing stdout and stderr
	Permissions
	Using shutil
	Creating a useful command line script
	Creating filters
	Parsing the command line
	Simple Logging
	Formatting log entries
	Logging exception information
	Logging to other destinations

	Chapter 11: Serializing Data
	Which XML module to use?
	Getting Started With ElementTree
	How ElementTree Works
	Elements
	Creating a New XML Document
	Parsing An XML Document
	Navigating the XML Document
	Using XPath
	About JSON
	Reading JSON
	Writing JSON
	Customizing JSON
	Reading and writing YAML
	Reading CSV data
	Nonstandard CSV
	Using csv.DictReader
	Writing CSV Data
	Pickle

	Appendix A: Python Bibliography
	Index

